Книга: Новый ум короля: О компьютерах, мышлении и законах физики

«Парадокс» Эйнштейна, Подольского и Розена

«Парадокс» Эйнштейна, Подольского и Розена

Как упоминалось в начале этой главы, некоторые из идей Альберта Эйнштейна сыграли фундаментальную роль в развитии квантовой теории. Напомним, что именно Эйнштейн впервые ввел еще в 1905 году понятие «фотон» — квант электромагнитного поля — из этого понятия впоследствии выросла идея дуализма волна-частица. (Эйнштейну отчасти принадлежит и понятие «бозон», как и многие другие идеи, сыгравшие центральную роль в квантовой теории поля.) Тем не менее Эйнштейн так и не смог принять теорию, в которую впоследствии развились эти идеи, полагая, что такая теория не может быть описанием физического мира. Хорошо известно отвращение, которое Эйнштейн питал к вероятностному аспекту квантовой теории, и которое он в сжатой форме сформулировал в одном из писем к Максу Борну в 1926 году (письмо цитируется в книге: Пайс [1982], с. 443):

«Квантовая механика производит очень внушительное впечатление. Но внутренний голос говорит мне, что это еще не настоящая „вещь“. Квантовая теория дает очень многое, но вряд ли способна приблизить нас к разгадке секрета Старика. Я глубоко убежден, что Он не играет в кости».

Однако, как оказывается, еще больше, чем такой физический индетерминизм, Эйнштейна беспокоило кажущееся отсутствие объективности в том, каким образом должна описываться квантовая теория. В моем изложении квантовой теории я пытался подчеркнуть, что описание мира, даваемое этой теорией, в действительности вполне объективно, хотя и кажется часто весьма странным и противоречащим интуиции. С другой стороны, Бор, по-видимому, считал, что квантовое состояние системы (между измерениями) не обладает настоящей физической реальностью, а действует лишь как свод «знаний некоторого субъекта» о рассматриваемой системе. Но разве различные наблюдатели не могут обладать различными знаниями о системе, тогда волновая функция должна была бы быть чем-то существенно субъективным, или «целиком существовать в уме физика»? Наша замечательно точная физическая картина мира, создававшаяся на протяжении многих столетий, не должна испариться целиком; поэтому Бору пришлось рассматривать мир на классическом уровне как действительно обладающий объективной реальностью.

Но в состояниях на квантовом уровне, которые, казалось бы, лежат в основе всего, никакой «реальности» он не усматривал.

Такая картина была неприемлема для Эйнштейна, который был глубоко убежден в том, что объективный физический мир должен действительно существовать, даже на микроскопических масштабах квантовых явлений. В своих многочисленных дискуссиях с Бором Эйнштейн пытался (но неудачно) показать, что квантовой картине присущи внутренние противоречия, и что за квантовой теорией должна стоять какая-то более глубокая структура, возможно, более похожая на картины классической физики. Возможно, вероятностное поведение квантовых систем является проявлением статистических эффектов более малых компонентов, или частей, системы, о которых мы не располагаем непосредственным знанием. Последователи Эйнштейна, в особенности Давид Бом, развили высказанную им идею о «скрытых переменных», согласно которой должна существовать некоторая вполне определенная реальность, но параметры, точно определяющие систему, не доступны нам непосредственно, и квантовые вероятности возникают из-за того, что значения этих параметров неизвестны до измерения.

Согласуется ли теория скрытых переменных со всеми наблюдаемыми фактами квантовой физики? Похоже, что ответ на этот вопрос должен быть утвердительным, но только если эта теория по существу нелокальна в том смысле, что скрытые параметры должны иметь возможность мгновенно влиять на элементы системы в сколь угодно далеких областях! Такая ситуация не понравилась бы Эйнштейну, особенно в связи с возникающими трудностями в специальной теории относительности. К ним я еще вернусь в дальнейшем. Наиболее успешная теория скрытых переменных известна как модель де Бройля (де Бройль [1956], Бом [1952]). Я не буду обсуждать здесь эти модели, так как в этой главе моя цель состоит только в том, чтобы дать общий обзор стандартной квантовой теории, а не различных соперничающих с ней положений. Если кто-нибудь жаждет физической реальности, но готов пожертвовать детерминизмом, то самой стандартной теории вполне достаточно. Он просто рассматривает вектор состояния как описывающий «реальность» — обычно изменяющийся во времени в соответствии с гладкой детерминистской U-процедурой, но время от времени совершающий причудливые «прыжки» в соответствии с R-процедурой всякий раз, когда эффект увеличивается до классического уровня. Но проблема нелокальности и явных трудностей с относительностью сохраняются. Рассмотрим некоторые из них.

Предположим, что у нас имеется физическая система, состоящая из двух подсистем А и В. Пусть, например, А и В — две различные частицы. Предположим, что для состояния частицы А существуют две (ортогональные) альтернативы |?) и |?), а для состояния частицы В — две (ортогональные) альтернативы |?) и |?). Как мы уже видели выше, общее комбинированное состояние системы будет не просто произведением (конъюнкцией «и») некоторого состояния частицы А и некоторого состояния частицы В, а суперпозицией («плюс») таких произведений. (Тогда мы говорим, что А и В коррелированы.) Пусть состояние системы представимо суперпозицией

|?)|?) + |?)|?).

Произведем измерение типа «да или нет» над частицей А, которое отличает состояние |?) (ДА) от состояния |?) (НЕТ). Что произойдет при этом с частицей B? Если измерение даст ответ ДА, то результирующим должно быть состояние

|?)|?),

а если измерение даст ответ НЕТ, то

|?)|?)

Таким образом, измерение, производимое нами над частицей А, заставляет состояние частицы В измениться скачком: перейти в |?), если получен ответ ДА, и перейти в |?), если получен ответ НЕТ! Частица В не обязательно должна находиться поблизости от частицы А; частицы могут быть разделены расстоянием в несколько световых лет. И все же частица В скачком переходит из одного состояния в другое одновременно с измерением, производимым над частицей А!

«Но постойте», — вполне может сказать читатель. К чему все эти подозрительные «скачки»? Почему не происходит просто следующее: представьте себе ящик, о котором известно, что в нем лежит один черный и один белый шар. Предположим, что некто извлек шары из ящика и, не глядя, отнес их в противоположные углы комнаты. Затем он взглянул на один шар и обнаружил, что он белый (аналог упоминавшегося выше состояния |?)), тогда — алле-оп! — другой шар оказывается черным (аналог состояния |?))! С другой стороны, если первый шар оказался черным (аналог состояния |?)), то в мгновение ока состояние второго шара скачком переходит в «заведомо белый» (аналог состояния |?)). Никто из читателей или читательниц в здравом уме не станет упорно приписывать внезапный переход второго шара из состояния «неопределенности» в состояние «определенно черный» или «определенно белый» некоторому таинственному нелокальному «влиянию», мгновенно доходящему до него от первого шара в тот самый момент, когда наблюдатель рассмотрел первый шар.

Но природа действует еще более изощренно. Действительно, в приведенном выше примере можно было бы представить, что система уже «знала», что частица В находилась в состоянии |?), а частица А — в состоянии |?) (или что частица В находилась в состоянии |?), а частица А — в состоянии |?)) до того, как над А было произведено измерение; и только экспериментатору состояния частиц не были известны. Обнаружив, что частица А находится в состоянии |?), он просто заключил, что частица В находится в состоянии |?). Такая точка зрения была бы «классической» — как в локальной теории скрытых переменных — и никаких скачкообразных физических переходов из одного состояния в другое в действительности не происходит. (Все это происходит лишь в уме экспериментатора!) Согласно такой точке зрения любая часть системы заранее «знает» результаты любого эксперимента, который мог бы быть произведен над ней. Вероятности возникают только из-за отсутствия такого знания у экспериментатора. Достойно удивления, что, как оказывается, эта точка зрения не срабатывает для объяснения всех загадочных нелокальных вероятностей, возникающих в квантовой теории!

Чтобы убедиться в этом, рассмотрим ситуацию, аналогичную изложенной выше, но такую, что выбор измерения, производимого над системой А, остается нерешенным до тех пор, пока системы A и B не окажутся пространственно разделенными. Тогда, как представляется, факт выбора измерения мгновенно окажет влияние на поведение системы B! Этот кажущийся парадоксальным «мысленный эксперимент» (ЭПР-типа) был предложен Альбертом Эйнштейном, Борисом Подольским и Натаном Розеном [1935]. Я опишу его вариант, предложенный Давидом Бомом [1951]. То, что никакое локальное «реалистическое» (т. е. типа скрытых переменных или «классического типа») описание не может дать правильные квантовые вероятности, следует из одной замечательной теоремы Джона С. Белла (Белл [1987], Рэй [1986], Сквайерс [1986]).

Предположим, что две частицы со спином 1/2, которые я буду называть электроном и позитроном (т. е. антиэлектроном), возникли в результате распада одной частицы со спином 0 в некоторой точке (центре), и что они движутся от центра в противоположных направлениях (рис. 6.30).


Рис. 6.30. Частица с нулевым спином распадается на две частицы с половинным спином — электрон Б и позитрон Р. Представляется, что измерение спина одной из частиц со спином 1/2 мгновенно фиксирует состояние спина другой частицы

Из закона сохранения углового момента следует, что спины электрона и позитрона в сумме должны давать 0, так как угловой момент исходной частицы был равен 0. Отсюда следует, что когда мы измеряем спин электрона в каком-нибудь направлении, то, какое направление мы бы ни выбрали, спин позитрона окажется направленным в противоположную сторону! Электрон и позитрон могут быть разделены расстоянием в несколько миль или даже световых лет, тем не менее кажется, что сам выбор измерения, производимого над одной частицей, мгновенно фиксирует ось спина другой частицы!

Попытаемся теперь выяснить, как квантовый формализм приводит нас к такому заключению. Представим состояние двух частиц с суммарным нулевым угловым моментом вектором состояния |Q). Тогда имеем соотношение

|Q) = |E?) |P?) — |E?) |P?),

где Е означает электрон, а Р — позитрон. Здесь все описывается в терминах направлений спина «вверх/вниз». Мы видим, что полное состояние является линейной суперпозицией электрона со спином вверх и позитрона со спином вниз, а также электрона со спином вниз и позитрона со спином вверх. Таким образом, если мы измеряем спин электрона в направлении «вверх/вниз» и обнаруживаем, что спин направлен вверх, то мы должны скачком перейти к состоянию |E?) |P?), поэтому спиновое состояние позитрона должно быть направлено вниз. С другой стороны, если мы обнаруживаем, что спин электрона направлен вниз, то состояние скачком переходит в |E?) |P?), поэтому спин позитрона направлен вверх.

Предположим, что мы выбрали какую-то другую пару противоположных направлений, например, вправо и влево, где

|E?) = |E?) + |E?), |P?) = |P?) + |P?)

и

|E?) = |E?) — |E?), |P?) = |P?) — |P?).

Тогда мы находим (если угодно, можете проверить выкладки):

|E?) |P?) — |E?) |P?) = (|E?) + |E?) (|P?) — |P?) — (|E?) — |E?)) (|P?) + |P?)) = |E?)|P?) + |E?)|P?) — |E?)|P?) — |E?)|P?) — |E?)|P?) + |E?)|P?) — |E?)|P?) + |E?)|P?) = -2(|E?)|P?) — |E?)|P?) = -2|Q)

т. е. мы получили (с точностью до несущественного множителя -2) то же самое состояние, из которого мы «стартовали». Таким образом, наше исходное состояние можно одинаково хорошо считать линейной суперпозицией электрона со спином вправо, позитрона со спином влево, и электрона со спином влево, позитрона со спином вправо! Выписанное выше выражение полезно, если мы решили измерять спин электрона в направлении вправо-влево вместо направления вверх-вниз. Если мы обнаружим, что спин электрона действительно направлен вправо, то состояние системы скачком переходит в |E?) |P?), поэтому спин позитрона направлен влево. С другой стороны, если мы обнаружим, что спин электрона направлен влево, то состояние системы скачком переходит в |E?) |P?), поэтому спин позитрона направлен вправо. Если бы мы стали измерять спин электрона в любом другом направлении, то получили бы соответствующую ситуацию: спиновое состояние позитрона мгновенно перешло бы скачком либо в измеряемое направление, либо в противоположное направление, в зависимости от измерения спина электрона.

Почему мы не можем моделировать спины наших частиц — электрона и позитрона аналогично тому, как мы поступили в приведенном выше примере с черным и белым шарами, извлекаемыми из ящика? Будем рассуждать на самом общем уровне. Вместо черного и белого шаров мы могли бы взять два каких-нибудь технических устройства Е и Р, первоначально образовывавших единое целое, а затем начавших двигаться в противоположные стороны. Предположим, что каждое из устройств Е и Р способно давать ответ ДА или НЕТ на измерение спина в любом заданном направлении. Этот ответ может полностью определяться технической начинкой устройства при любом выборе направления — или, может быть, устройство дает только вероятностные ответы (вероятность определяется его технической начинкой) — но при этом мы предполагаем, что после разделения каждое из устройствЕ иР ведет себя совершенно независимо от другого.

Поставим с каждой стороны измерители спина, один из которых измеряет спин Е, а другой — спин Р. Предположим, что каждый измеритель обладает тремя настройками для измерения направления спина при каждом измерении, например, настройками А, В, С для измерителя спина Е и настройками А', В', С' для измерителя спина Р. Направления А', В', С' должны быть параллельны, соответственно, направлениям А, В, и С. Предполагается также, что все три направления А, В, и С лежат в одной плоскости и образуют между собой попарно равные углы, т. е. углы в 120° (рис. 6.31).


Рис. 6.31. Простая версия парадокса ЭПР, принадлежащая Дэвиду Мермину, и теорема Белла, показывающие, что существует противоречие между локальным реалистическим взглядом на природу и результатами квантовой теории, E-измеритель и Р-измеритель каждый независимо имеет по три настройки для направлений, в которых они могут измерять спины соответствующих частиц (электрона и позитрона)

Предположим теперь, что эксперимент повторяется многократно и дает различные результаты для каждой из настроек. Иногда E-измеритель фиксирует ответ ДА (т. е. спин направлен вдоль измеряемого направления А, В, и С), иногда фиксирует ответ НЕТ (т. е. спин имеет направление, противоположное тому, в котором производится измерение). Аналогично, Р-измеритель фиксирует иногда ответ ДА, иногда — НЕТ. Обратим внимание на два свойства, которыми должны обладать настоящие квантовые вероятности:

(1) Если настройки устройств Е и Р одинаковы (т. е. А совпадает с A' и т. д.), то результаты измерений, производимых с помощью устройств Е и Р, всегда не согласуются между собой (т. е. E-измеритель фиксирует ответ ДА всякий раз, когда Р-измеритель дает ответ НЕТ, и ответ НЕТ всякий раз, когда Р-измеритель дает ответ ДА).

(2) Если лимбы настроек могут вращаться и установлены случайно, т. е. полностью независимо друг от друга, то два измерителя равновероятно дают как согласующиеся, так и не согласующиеся результаты измерений.

Нетрудно видеть, что свойства (1) и (2) непосредственно следуют из приведенных выше правил квантовых вероятностей. Мы можем предположить, что E-измеритель срабатывает первым. Тогда Р-измеритель обнаруживает частицу, спиновое состояние которой имеет направление, противоположное измеренному E-измерителем, поэтому свойство (1) следует немедленно. Чтобы получить свойство (2), заметим, что для измеряемых направлений, образующих между собой углы в 120°, если E-измеритель дает ответ ДА, то Р-направление расположено под углом 60° к тому спиновому состоянию, на которое действует Р-измеритель, а если E-измеритель дает ответ НЕТ, то Р-направление образует угол 120° с этим спиновым состоянием. С вероятностью 3/4 = (1/2)(1 + cos60°) измерения согласуются, и с вероятностью 1/4 = (1/2)(1 + cos 120°) они не согласуются. Таким образом, усредненная вероятность для трех настроек Р-измерителя при условии, что E-измеритель дает ответ ДА, составляет (1/3)(0 + 3/4 + 3/4) = 1/2 для ответа ДА, даваемого Р-измерителем, и (1/3)(1 + 1/4 + 1/4) = 1/2 для ответа НЕТ, даваемого Р-измерителем, т. е. результаты измерений, производимых Е- и Р-измерителями, равновероятно согласуются и не согласуются. Аналогичная ситуация возникает и в том случае, когда E-измеритель дает ответ НЕТ. Это и есть свойство (2) (см. Глава 6. «Спин и сфера Римана состояний»).

Замечательно, что свойства (1) и (2)не согласуются с любой локальной реалистической моделью (т. е. с любой разновидностью устройств рассматриваемого типа)! Предположим, что у нас есть такая модель, E-машину следует приготовить для каждого из возможных измерений А, В или С. Заметам, что если бы ее следовало готовить только дам получения вероятностного ответа, то P-машина (в соответствии со свойством (1)) не могла бы достоверно давать результаты измерения, не согласующиеся с результатами измерения E-машины. Действительно, обе машины должны давать свои ответы, определенным образом приготовленные заранее, на каждое из трех возможных измерений. Предположим, например, что эти ответы должны быть ДА, ДА, ДА, соответственно, для настроек А, В, С; тогда правая частица должна быть приготовлена так, чтобы давать ответы НЕТ, НЕТ, НЕТ при соответствующих трех настройках. Если же вместо этого приготовленные ответы левой частицы гласят: ДА, ДА, НЕТ, то ответами правой частицы должны быть НЕТ, НЕТ, ДА Все остальные случаи по существу аналогичны только что приведенным. Попытаемся теперь выяснить, согласуется ли это со свойством (2). Наборы ответов ДА, ДА, ДА / НЕТ, НЕТ, НЕТ не слишком многообещающи, так как дают 9 случаев несоответствия и 0 случаев соответствия при всех возможных парах настроек А/А', А/В', А/С', В/А' и т. д. А как обстоит дело с наборами ДА, ДА, НЕТ / НЕТ, НЕТ, ДА и тому подобными ответами? Они дают 5 случаев несоответствия и 4 случая соответствия. (Чтобы убедиться в правильности последнего утверждения, произведем подсчет случаев: Д/Н, Д/Н, Д/Д, Д/Н, Д/Н, Д/Д, Н/Н, Н/Н, Н/Д. Мы видим, что в 5 случаях ответы не согласуются и в 4 случаях согласуются.) Это уже гораздо ближе к тому, что требуется для свойства (2), но еще недостаточно хорошо, так как случаев несоответствия ответов должно быть столько же, сколько случаев соответствия! Для любой другой пары наборов возможных ответов, согласующихся со свойством (1), мы снова получили бы соотношение 5 к 4 (за исключением наборов НЕТ, НЕТ, НЕТ / ДА, ДА, ДА, дам которых соотношение было бы хуже — снова 9 к 0). Не существует набора приготовленных ответов, который могли бы дать квантово-механические вероятности. Локальные реалистические модели исключаются![164]

Оглавление книги


Генерация: 0.412. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз