Книга: Новый ум короля: О компьютерах, мышлении и законах физики

Предисловие Мартина Гарднера

Предисловие Мартина Гарднера

Для многих великих физиков и математиков написать книгу, понятную не только профессионалам — дело трудное, если не сказать невозможное. И вплоть до сего времени иным могло бы показаться, что Роджер Пенроуз, один из наиболее компетентных и плодотворно работающих физиков-теоретиков во всем мире, относится как раз к такой категории ученых. Но даже для тех из нас, кто был знаком с его популяризаторскими статьями и лекциями и не разделял подобного мнения, появление превосходной книги для широкого круга читателей, ради которой он оторвал от работы часть своего времени, стала приятным сюрпризом. И я не сомневаюсь, что этой книге в будущем уготовано стать классической монографией.

Хотя в различных главах своей книги Пенроуз затрагивает и теорию относительности, и квантовую механику, и космологию — главным объектом его рассуждений является так называемая психофизическая проблема «ум — тело». Десятилетиями сторонники теории «сильногоИИ» (искусственного интеллекта) пытались убедить нас, что не пройдет и одного-двух веков (а некоторые опускали эту планку даже до пятидесяти лет!), как электронные компьютеры полностью сравняются по своим возможностям с человеческим мозгом. Находясь под впечатлением прочитанных в юности научно-фантастических книг и будучи убежденными в том, что наши мозги — это просто «компьютеры, сделанные из мяса» (как выразился однажды Марвин Мински), они считали несомненным, что удовольствие и боль, восприятие прекрасного и чувство юмора, сознание и свобода воли — все эти способности возникнут у электронных роботов сами собой, как только управляющие ими алгоритмы обретут достаточную степень сложности.

Но некоторые методологи науки (в особенности Джон Серл, чей мысленный эксперимент со знаменитой китайской комнатой Пенроуз очень подробно разбирает в одной из глав) с этим решительно не согласны. В их представлении компьютер по существу ничем не отличается от обычных механических калькуляторов, в которых арифметические действия выполняются посредством колесиков, рычажков или иных приспособлений, позволяющих передавать сигналы. (За основу компьютера с таким же успехом можно взять, например, маленькие перекатывающиеся шарики или текущую по системе труб воду.) Поскольку электричество движется по проводам быстрее, чем любая иная форма энергии (за исключением света), электрические устройства могут оперировать символами с большей скоростью, что позволяет им выполнять чрезвычайно громоздкие и сложные задачи. Но «осознает» ли компьютер свои действия в большей мере, чем это доступно обычным деревянным счетам? Сегодня компьютеры могут играть в шахматы на уровне гроссмейстеров. Но «понимают» ли они эту игру лучше, чем машина для «крестиков-ноликов», собранная группой компьютерных хакеров из поломанных игрушек?

Книга Пенроуза является самой мощной атакой на теорию сильногоИИ из всего написанного до сих пор. За несколько прошедших столетий было высказано немало возражений против понимания мозга как машины, управляемой общеизвестными законами физики; но доводы Пенроуза более убедительны, ибо они базируются на недоступной для его предшественников информации. Эта книга открывает нам другого Пенроуза — не только математика и физика, но и философа высокого уровня, не отступающего перед проблемами, которые современные философы слишком легко сбрасывают со счетов как бессмысленные.

К тому же Пенроуз, вопреки все более настойчивым возражениям небольшой группы физиков, имеет смелость отстаивать позиции здорового реализма. В его представлении реальна не только вселенная, но и математическая истина, непостижимым образом ведущая свое собственное независимое и вечное существование. Подобно Ньютону и Эйнштейну, Пенроуз испытывает благоговейный трепет и чувство смирения как перед физическим миром, так и перед Платоновым царством чистой математики. Выдающийся ученый в области теории чисел Пол Эрдос любит говорить «о божественной книге», в которой записаны все лучшие доказательства. И математикам иной раз приоткрывается та или иная ее страница. Моменты прозрения, когда математик или физик внезапно вскрикивает «Ага!», по мнению Пенроуза, не могут явится «результатом сколь угодно сложных вычислений»: в эти мгновения разум соприкасается с объективной истиной. Возможно ли, вопрошает Пенроуз, что мир «идей» Платона и реальный физический мир (который физики сегодня все больше «растворяют» в математике) — на самом деле тождественны?

Большое внимание в книге Пенроуза уделяется знаменитой фрактальной структуре, называемой множеством Мандельброта в честь ее первооткрывателя Бенуа Мандельброта. Хотя в статистическом смысле такие объекты обладают свойством самоподобия, которое выявляется при увеличении отдельных частей, их бесконечно причудливые очертания постоянно меняются самым непредсказуемым образом. Пенроузу кажется непонятным, как можно сомневаться в том, что эти экзотические структуры существуют не менее «реально», чем гора Эверест, и могут быть исследованы точно так же, как исследуются джунгли.

Пенроуз принадлежит к постоянно пополняющейся группе ученых, которые считают, что Эйнштейн не был упрямым или, тем более, бестолковым, когда однажды, ссылаясь на свой «левый мизинец», он провозгласил неполноту квантовой механики. Чтобы подтвердить справедливость этого утверждения, Пенроуз увлекает читателя в головокружительное путешествие, в ходе которого мы знакомимся с комплексными числами, машинами Тьюринга, теорией сложности, поразительными парадоксами квантовой механики, формальными системами, теоремой неразрешимости Геделя, фазовыми и гильбертовыми пространствами, черными и белыми дырами, излучением Хокинга, энтропией, строением мозга — и множеством других вопросов, занимающих сегодня умы ученых. «Осознают» ли кошки и собаки свое «я»? Могут ли в теории существовать передатчики материи, способные переместить человека из одного места в другое на манер астронавтов из сериала «Звездный Путь»! Насколько полезно нам — с точки зрения выживания — возникшее в ходе эволюции сознание? Существует ли структура более общая, чем квантовая механика, где бы нашлось естественное объяснение направлению времени и различиям между правым и левым? Важны ли законы квантовой механики, а может и некие более «тонкие» законы, для деятельности разума?

На два последних вопроса Пенроуз дает положительный ответ. Его знаменитая теория «твисторов» — абстрактных геометрических объектов, действующих в многомерном комплексном пространстве, которое лежит в основе обычного пространства-времени — носит чересчур узкоспециализированный характер, чтобы быть включенной в эту книгу. Она стала результатом его двадцатилетних усилий проникнуть в область более глубокую, чем квантовые поля и частицы. Прибегая к своей четырехступенчатой классификации теорий — превосходных, полезных, пробных и тупиковых, — Пенроуз скромно поместил теорию твисторов в разряд пробных, вместе с суперструнами и другими теориями великого объединения, которые сейчас вызывают острые дискуссии в научной среде.

С 1973 года Пенроуз возглавляет кафедру Рауза Болла в Оксфордском университете. Это тем более заслуженно, что В. У. Рауз Болл был не только выдающимся математиком, но еще и фокусником-любителем, настолько увлеченным занимательной математикой, что однажды он даже написал на эту тему ставшую классической книгу «Математические эссе и развлечения»[6]. Пенроуз разделяет эту страсть Болла к играм. В юности он придумал «невозможный объект», состоящий из трех стержней. (Невозможный объект — это изображение цельной фигуры, которая не может существовать из-за наличия в ней внутренне противоречивых элементов.)[7]

Вместе со своим отцом Лайонелом, генетиком по профессии, он превратил свой невозможный объект в «Лестницу Пенроуза»[8] структуру, использованную Морицем Эшером на двух известных литографиях: «Идущие вверх и идущие вниз» и «Водопад».[9]

В один прекрасный день, когда Пенроуз лежал в кровати, с ним случился, как он сам называет это, «приступ сумасшествия», когда ему явственно представился невозможный объект в четырехмерном пространстве. Если бы существо из четырехмерного мира наткнулось на эту штуку, шутит Пенроуз, оно наверняка воскликнуло бы: «Боже мой, что это такое!?»

Работая в 1960-х годах вместе со своим другом Стивеном Хокингом над проблемами космологии, он сделал свое самое, наверное, известное открытие. Если теория относительности выполняется «до самого конца», то в каждой черной дыре должна существовать сингулярность, где законы физики теряют свою силу. Но даже это достижение отошло в последние годы на второй план, после того как Пенроуз предложил конструкцию из «плиток» двух видов, которыми можно покрыть всю плоскость подобно мозаике Эшера — только непериодическим образом. (Об этих удивительных фигурах вы можете узнать подробнее в моей книге «От мозаик Пенроуза к надежным шрифтам»[10].) Пенроуз изобрел, или, скорее, открыл их, даже не предполагая, что когда-нибудь они могут кому-то пригодиться. К всеобщему изумлению оказалось, что трехмерные аналоги этих фигур могут служить основой для новой необычной формы материи — «квазикристаллов». Сейчас изучение «квазикристаллов» превратилось в одну из наиболее активных областей исследований в кристаллографии. Это, безусловно, самый впечатляющий пример того, как в наши дни математические игры могут иметь совершенно неожиданные практические приложения.

Достижения Пенроуза в математике и физике — а я упомянул только незначительную их часть — рождаются из постоянно присутствующего в его душе ощущения тайны и красоты бытия. Мизинец «подсказывает» ему, что человеческий мозг представляет собой устройство более сложное, чем набор крошечных проводков и переключателей. Фигура Адама в прологе и эпилоге этой книги в определенном смысле служит символом зарождения разума в ходе неторопливого развития осознающей себя жизни. В нем я тоже вижу Пенроуза — мальчика, сидящего в третьем ряду, позади признанных корифеев в области ИИ, — который не боится высказать им вслух свое мнение, что их «короли-то голые»[11]). Юмор присущ многим высказываниям Пенроуза, но это утверждение — отнюдь не шутка.

Мартин Гарднер

Оглавление книги


Генерация: 2.092. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз