Книга: Новый ум короля: О компьютерах, мышлении и законах физики

Амплитуды вероятностей

Амплитуды вероятностей

Выбор фотона в приведенных выше рассуждениях не был продиктован ничем особенным. С тем же успехом для этого подошли бы электроны, любые другие частицы или даже целые атомы. Правила квантовой механики, насколько можно судить, утверждают, что и крикетные шары, и слоны должны вести себя описанным выше странным образом, где различные альтернативные возможности могут каким-то образом образовывать «суммы» состояний с комплексными весами! Однако нам никогда не приходилось реально видеть крикетные шары или слонов в виде столь странных «сумм». Почему? Это трудная и к тому же противоречивая тема, которую я не хотел бы сейчас затрагивать. А пока же мы просто допустим в качестве рабочего правила, что существуют два различных возможных уровня описания физической реальности, которые мы называем квантовым уровнем и классическим уровнем. Мы будем использовать эти странные комбинации состояний с комплекснозначными весами только на квантовом уровне. Крикетные же шары и слоны будут у нас объектами классического уровня.

Квантовый уровень — это уровень молекул, атомов и других субатомных частиц. Обычно считается, что это уровень явлений очень «малого масштаба», но эта «малость» не относится к физическим размерам. Мы увидим, что квантовые эффекты могут происходить на расстояниях многих метров или даже световых лет. Правильнее было бы считать, что нечто принадлежит «квантовому уровню», если это связано лишь с очень малыми изменениями энергии. (В дальнейшем я попытаюсь уточнить, о чем идет речь, главным образом в главе 8,) Классический уровень — это «макроскопический» уровень, о котором мы имеем более непосредственные знания. Это — тот уровень, для которого верны наши обыденные представления о «происходящем», и где можно использовать наше обычное понятие вероятности. Мы увидим, что комплексные числа, которые нам приходится использовать на квантовом уровне, тесно связаны с классическими вероятностями. Но они не тождественны друг другу, и поэтому чтобы освоиться с этими комплексными числа, было бы очень полезно вспомнить для начала, как ведут себя классические вероятности.

Рассмотрим некую неопределенную классическую систему, то есть систему, о которой мы не знаем, в каком из двух альтернативных состояний А или В она находится. Такую систему можно было бы рассматривать как «взвешенную» комбинацию альтернатив А и В:

р х альтернатива А + q х альтернатива В,

где р — вероятность события A, a q — вероятность события В. (Напомним, что вероятность — действительное число, принимающее значение от 0 до 1. Вероятность 1 означает, что событие «заведомо произойдет», а вероятность 0 означает, что событие «заведомо не произойдет».) Если А и Вединственно возможные альтернативы, то сумма их вероятностей должна быть равна 1:

p + q = 1.

Если же существуют и другие возможности, то эта сумма должна быть меньше 1. В этом случае выражение р: q дает отношение вероятности события А к вероятности события В. А сами вероятности событий А и В (при условии, что имеются только эти две альтернативы) были бы равна, соответственно, p/(p + q) и q/(p + q) — Мы можем использовать такую интерпретацию и в том случае, когда сумма р + q больше 1. (Такой способ вычисления вероятностей мог бы быть полезным, например, если бы мы многократно повторяли эксперимент, а р было бы количеством событий A, a q — количеством событий В). Мы будем говорить, что числа р и q нормированы, если р + q = 1, в этом случае они дают сами вероятности, а не только отношения вероятностей.

Подобным образом мы поступаем и в квантовой физике, с тем лишь исключением, что в квантовой физике р и qкомплексные числа, в силу чего я предпочитаю их обозначить ? и z, соответственно:

? х альтернатива А + z х альтернатива В.

Как же теперь нам истолковать ? и z? Несомненно, что они не являются обычными вероятностями (или отношениями вероятностей), так как каждое из чисел ? и z может по отдельности быть отрицательным или комплексным. Но во многих отношениях они ведут себя подобно вероятностям. Числа той z (при соответствующей нормировке — см. далее) принято называть амплитудами вероятности, или просто амплитудами. Более того, часто используют терминологию, которая наводит на мысль о вероятностях, например: «Существует амплитуда ? того, что произойдет событие А, и амплитуда z того, что произойдет событие В». Амплитуды еще не вероятности, но на миг попытаемся сделать вид, будто они являются вероятностями или, точнее, аналогами вероятностей на квантовом уровне.

Как проявляются обычные вероятности? Полезно представить себе какой-нибудь макроскопический объект, например, шарик, прошедший сквозь одну из двух щелей к стоящему позади экрану (как в описанном выше эксперименте с двумя щелями (см. рис. 6.3), но вместо прежнего фотона теперь фигурирует классический макроскопический шарик). Должна существовать некоторая вероятность P(s, t) того, что отправившись из точки s шарик достигнет верхнего отверстия t, и некоторая вероятность P(s, t) того, что шарик достигнет нижнего отверстия b. Кроме того, если мы выберем некоторую точку р на экране, то должна существовать некоторая вероятность P(t, р) того, что шарик достигнет точки р на экране, пройдя через t, и некоторая вероятность Р(b, р) того, что он что шарик достигнет точки р, пройдя через b. Если открыто только отверстие t, то для того, чтобы найти вероятность того, что шарик действительно достигает точки р, пройдя через отверстие t, мы умножаем вероятность того, что он попадает из точки s в t, на вероятность того, что он попадает из t в точку р:

P(s, t) х P(t, p).

Аналогично, если открыто только нижнее отверстие, то вероятность того, что шарик попадает из s в р, равна

P(s, b) х Р(b, р).

Если открыты оба отверстия, то вероятность того, что шарик попадает из s в точку р через t, по-прежнему равна первому произведению P(s, t) х P(t, р) (так, как если бы было открыто только отверстие t), и вероятность того, что шарик попадает из точки s в точку р через b, по-прежнему равна P(s, b) х Р(b, р). Поэтому полная вероятность P(s, р) того, что шарик, побывав в точке р, попадет в точку s, равна сумме двух приведенных выше вероятностей:

P(s, р) = P(s, t) х P(t, р) + P(s, b) x P(b, p).

На квантовом уровне эти правила остаются в точности такими же, с тем лишь исключением, что теперь роль вероятностей, с которыми мы имели дело в классическом случае, должны играть эти странные комплексные амплитуды. Например, в рассмотренном выше эксперименте с двумя щелями мы имеем амплитуду A(s, t) того, что фотон достигнет верхней щели t из источника s, и амплитуду A(t, р) того, что фотон достигнет точки р на экране из щели t, и, перемножив эти амплитуды, мы получим амплитуду

A(s, t) х A(t, p)

того, что фотон достигнет точки р на экране через щель t. Как и в случае вероятностей, это — правильная амплитуда в предположении, что верхняя щель открыта независимо от того, открыта или не открыта нижняя щель b. Аналогично, в предположении, что открыта нижняя щель b, мы получаем амплитуду

A(x, b) х А(b, р)

того, что фотон достигнет точки р на экране через щель b (независимо от того, открыта или не открыта верхняя щель t). Если же открыты обе щели, то мы получаем полную амплитуду

A(s, р) = A(s, t) х A(t, р) + A(s, b) х A(b, р)

того, что фотон попадает в точку р из точки s.

Все это очень мило, но совершенно бесполезно, пока мы не знаем, как интерпретировать амплитуды, когда квантовый эффект увеличивается до классического уровня. Мы могли бы, например, поместить детектор фотонов, или фотоячейку в точке р, что дало бы нам способ увеличения события, происходящего на квантовом уровне, — прибытия фотона в точку р — до события, различимого на классическом уровне, скажем, громкого «щелчка». (С таким же успехом можно было бы взять в качестве экрана фотопластинку, на которой фотон оставляет видимое пятнышко, но для большей доходчивости мы все же воспользуемся фотоячейкой, издающей при срабатывании звуковой сигнал.) Должна существовать реальная вероятность того, что произойдет восприятие звукового «щелчка», а не одной из этих загадочных «амплитуд»! Как нам перейти от амплитуд к вероятностям, когда мы переходим с квантового уровня на классический? Оказывается, что для этого существует очень красивое, но удивительное правило.

Правило это состоит в том, что для получения классической вероятности, необходимо взять квадрат модуля квантовой комплексной амплитуды. Что такое «квадрат модуля»? Напомним как изображаются комплексные числа на плоскости Аргана (глава 3, с. 84). Модуль |z| комплексного числа z есть просто расстояние от начала координат (т. е. от точки 0) до точки, изображающей число z. Квадрат модуля |z|2 — просто квадрат этого числа. Таким образом, если

z = х + iy,

где x и у — действительные числа, то (по теореме Пифагора, так как отрезок прямой, соединяющий точки 0 и z, служит гипотенузой прямоугольного треугольника с катетами х и у) квадрат модуля равен

|z|2 = х2 + у2.

Заметим, что для того, чтобы это выражение было настоящей «нормированной» вероятностью, значение |z|2 должно быть заключено между 0 и 1. Это означает, что для того, чтобы быть надлежащим образом нормированной амплитудой, точка z на плоскости Аргана должна лежать где-то внутри единичной окружности (рис. 6.8).


Рис. 6.8. Амплитуда вероятности представлена как точка z внутри единичной окружности на плоскости Аргана. Квадрат расстояния |z|2 от центра может стать действительной вероятностью, если эффекты увеличены до классического уровня

Однако иногда возникает необходимость рассматривать комбинации

? х альтернатива А + z х альтернатива В,

где ? и z — всего лишь пропорциональны амплитудам вероятностей и поэтому не должны лежать внутри единичной окружности. Условие их нормированности (и, следовательно, того, что они дают настоящие амплитуды вероятностей) заключается в том, что сумма квадратов их модулей должна быть равна единице:

|?|2 + |z|2 = 1.

Если числа ? и z не удовлетворяют этому условию нормировки, то настоящими амплитудами вероятностей альтернатив А и В, соответственно, служат величины


которые лежат внутри единичной окружности.

Теперь мы видим, что амплитуда вероятности в конечном счете представляет собой аналог не настоящей вероятности, а скорее «комплексного квадратного корня» из вероятности. Что происходит с ней, когда эффекты квантового уровня увеличиваются настолько, что достигают классического уровня? Напомним, что, манипулируя с вероятностями и амплитудами, мы иногда сталкивались с необходимостью производить их умножение и сложение. Прежде всего заметим, что операция умножения не сопряжена с какими-либо проблемами при переходе от квантовых правил к классическим. Происходит это вследствие замечательного математического факта: квадрат модуля произведения двух комплексных чисел равен произведению квадратов модулей каждого из чисел:

|z?|2 = |z|2 |?|2.

(Это свойство непосредственно следует из геометрического смысла произведения двух комплексных чисел, приведенного в главе 3, но на языке действительной и мнимой частей z = х + , ? = u+iv; это — прекрасное маленькое чудо. Проверьте сами!)

Из этого факта следует, что если в эксперименте с двумя щелями для частицы существует только один маршрут (открыта только одна щель, например t), то рассуждения можно строить «классически», и вероятности получатся одними и теми же, независимо от того, наблюдаем ли мы за прохождением частицы в промежуточных точках ее пути (в щели t)[142]. А квадраты модулей можно будет взять на любой стадии наших вычислений, например,

|A(s, t)|2 х |A(t, p)|2 = |A(s,t) х A(t,p)|2.

Ответ — результирующая вероятность — получится одним и тем же.

Но если перед частицей открыт более чем один маршрут (например, если открыты обе щели), то необходимо образовывать сумму, и здесь-то и начинают обнаруживаться характерные особенности квантовой механики. Когда мы образуем квадрат модуля суммы ? + z двух комплексных чисел ? и z, мы обычно не получаем только лишь сумму квадратов модулей этих чисел; существует дополнительный «поправочный член»:

|? + z|2 = |?|2 + |z|2 + 2|?||z| cos?,

где ? — угол, образуемый направлениями на точки z и ? из начала координат на плоскости Аргана (рис. 6.9).


(Напомним, что косинус угла есть отношение «прилежащий к углу катет/гипотенуза» для прямоугольного треугольника. Пытливый читатель, незнакомый с этой формулой, может попытаться самостоятельно вывести ее, используя геометрию, изложенную в главе 3. В сущности эта формула есть не что иное, как слегка «замаскированное» хорошо известное «правило косинуса»!) Именно поправочный член 2|?||z|cos? описывает квантовую интерференцию между квантовомеханическими альтернативами. Значение cos? заключено между -1 и 1. При ? =0° мы имеем cos? =1, и две альтернативы усиливают друг друга так, что полная вероятность оказывается больше суммы отдельных вероятностей. При ? = 180° мы имеем cos? = -1, и две альтернативы стремятся погасить друг друга, в результате чего полная вероятность оказывается меньше суммы отдельных вероятностей (деструктивная интерференция). При ? = 90° мы имеем cos? =0, и получается ситуация, промежуточная между двумя упомянутыми выше: две вероятности просто суммируются. Для больших или сложных систем поправочные члены обычно «усредняются», так как «среднее» значение cos? равно нулю, и мы получаем обычные правила классической вероятности! Но на квантовом уровне эти члены описывают важные интерференционные эффекты.

Рассмотрим эксперимент с двумя щелями, когда обе щели открыты. Амплитуда того, что фотон достигает точки р, равна сумме ? + z, где

? = A(s, t) x A(t,p) и z = A(s, b) x A(b, p).

В самых ярких точках экрана имеем: ? = z (так что cos? = 1), откуда

|? + z|2 = |2?|2 = 4 |?|2,

что в 4 раза больше вероятности |?|2, когда открыта только верхняя щель, и приводит к увеличению интенсивности потока большого числа фотонов в 4 раза, в полном согласии с экспериментом. В темных точках экрана имеем ? = — z (так что cos? = -1), откуда

|? + z|2 = |??|2 = 0,

т. е. интенсивность равна нулю (деструктивная интерференция!) также в соответствии с наблюдением. Точно посередине между этими точками мы имеем: ? = iz или ? = — iz (так что cos? =0), откуда

|? + z|2 — |? ± i?|2 = |?|2 + |?|2 = 2|?|2,

что дает вдвое бо?льшую интенсивность освещенности по сравнению с освещенностью только при одной щели (как в случае с классическими частицами). В конце следующего раздела мы узнаем, как рассчитывать, где именно расположены яркие, темные точки и точки с промежуточной интенсивностью освещенности.

И в заключение одно замечание. Когда открыты обе щели, амплитуда того, что частица достигнет точки р через щель t, в самом деле равна ? = A(s, t) х A(t, p), но мы не можем интерпретировать квадрат ее модуля |?|2 как вероятность того, что частица «действительно» прошла через верхнюю щель, чтобы достигнуть точки р. Такая интерпретация привела бы нас к бессмысленным ответам, в особенности, если точка р находится в темном месте на экране. Но если мы захотим «зарегистрировать» присутствие фотона в щели t, то усиливая эффект его присутствия (или отсутствия) там до классического уровня, мы можем использовать величину |A(s, t)|2 в качестве вероятности того, что фотон действительно присутствует в щели t. Но такое наблюдение нарушило бы картину распределения волн. Для того, чтобы произошла интерференция, нам необходимо убедиться в том, что прохождение фотона через щели остается на квантовом уровне, так чтобы оба альтернативных маршрута давали свой вклад и иногда могли гасить друг друга. На квантовом уровне отдельные альтернативные маршруты обладают только амплитудами, но не вероятностями.

Оглавление книги


Генерация: 2.008. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз