Книга: Программирование игр и головоломок

7. Обо всем понемногу

7. Обо всем понемногу

Головоломка 31.

Программисты обманываются, поскольку они не берут на себя труд прояснить различные ситуации.

В строке 200 мы знаем, что цепочка а пройдена полностью, и исследованы все символы, не являющиеся пробелами. Если в цепочке b содержится еще какой-нибудь символ, не являющийся пробелом, то равенства цепочек нет. Все в порядке.

В строке 300 цепочка а пройдена вплоть до некоторого символа, не являющегося пробелом, и этот символ еще не исследован. Цепочка b пройдена полностью, и в ней не содержится более ни одного символа, не являющегося пробелом. Следовательно, эти две цепочки различны. Можно было бы сказать, что дальнейшее движение по цепочке а бесполезно, но не приводит к ошибке. Но это неверно. Вы остановились на еще не исследованном символе, который не является пробелом. Если вы перейдете к следующему символу, не являющемуся пробелом, то данный символ вы потеряете. Если, как бывает в большинстве случаев, цепочка а совпадает с цепочкой b с точностью до пробелов за исключением единственного дополнительного символа в конце цепочки, то именно по этой-то причине и должен быть остановлен пробег цепочки а. Перемещаясь и не обнаруживая больше символов, не являющихся пробелами, мы получаем сообщение, что цепочки совпадают, а это неверно. Ясно, что программисты не принимали во внимание и не изучали именно этот случай. И никаких оснований поступать так нет. В этом и состоит преимущество логических рассуждений о тексте программы по сравнению с проверкой ее правильности с помощью тестирования.

Ваша программа должна сохранять симметричную роль обеих цепочек. Не начинайте проверять результат пробега цепочки а, не пробежав цепочки b, и изучайте обе цепочки разом.

Возьмем общую ситуацию:

а пройдена вплоть до i включительно;

b пройдена вплоть до j включительно;

обе части совпадают с точностью до пробелов.

ВЫПОЛНЯТЬ
  продвинуть i на следующий символ в а, не являющийся пробелом;
  продвинуть j на следующий символ в b, не являющийся пробелом;
  ЕСЛИ таких нет в а И таких нет в b ТО
  r := ИСТИНА;
    КОНЧЕНО КОНЕЦ_ЕСЛИ;
  ЕСЛИ таких нет в a ИЛИ таких нет в b ТО
  r := ЛОЖЬ;
    КОНЧЕНО КОНЕЦ_ЕСЛИ;
  ЕСЛИ a[i] ? b[j] ТО r := ЛОЖЬ;
  КОНЧЕНО КОНЕЦ_ЕСЛИ;
ВЕРНУТЬСЯ

Эта программа совершенно симметрична относительно а и b

Головоломка 33.

Нужно работать по модулю n. Удобнее всего пронумеровать элементы вектора от 0 до n ? 1. Все элементы спускаются вниз на m по модулю n. Элемент, который переходит в 0, имеет номер m; элемент, который переходит в m, имеет номер 2m по модулю n; элемент, который переходит в 2m, имеет номер 3m по модулю n… Таким образом, мы получаем цепочку чисел, кратных m по модулю n. Весь вопрос в том, чтобы узнать, порождает ли последовательность чисел, кратных m по модулю n, последовательность всех целых от 0 до n ? 1.

Это так, если m и n взаимно просты. В противном случае пусть с наибольший общий делитель m и n:

m = m'с, n = n'c,

n' * m = n' * m' * с = m' * n = 0 по модулю n.

Эта цепочка возвращается в 0 за n' = n/с операций. При этом пробегается не весь вектор, а только его элементы, сравнимые с 0 по модулю с.

Беря в качестве исходных элементов различных циклов последовательно целые числа от 0 до c ? 1, вы разместите все элементы вектора, причем каждый из них будет перемещаться в точности один раз…

Головоломка 34.

Рассмотрите более общую задачу, что заставит вас открыть одно из этих знаменитых «преобразований программы», столь полезных, когда желательно улучшить уже существующие программы. Обозначим через t и u два условия, а через a и b — две последовательности инструкций. Вот простой цикл:

ПОКА t ВЫПОЛНЯТЬ
  ЕСЛИ u ТО a ИНАЧЕ b
КОНЕЦ_ЕСЛИ
ВЕРНУТЬСЯ

Последовательность операций следующая:

— проверяется условие t,

— если оно истинно, то проверяется u,

— если u истинно, то выполняется a, и все возобновляется.

Допустим, что условия t и u таковы, что я имею возможность проверить u, даже если проверка условия t дает значение ЛОЖЬ[29]. Тогда, пока условия t и u истинны, в цикле выполняется а.

Вот другая последовательность, которая может встретиться:

— проверяется условие t,

— если оно истинно, то проверяется u,

— если u ложно, то выполняется b, и все возобновляется.

Таким образом, мы приходим к форме, для которой можно доказать, что она всегда эквивалентна исходной (с точностью до ограничения, что должна существовать возможность вычисления и даже в случае, когда t ложно).

ПОКА t ВЫПОЛНЯТЬ
  ПОКА t И u ВЫПОЛНЯТЬ а ВЕРНУТЬСЯ
  ПОКА t И НЕ u ВЫПОЛНЯТЬ b ВЕРНУТЬСЯ
ВЕРНУТЬСЯ

Мы перепишем программу для определения равнин, чтобы придать ей форму ПОКА, заключенного в скобки ЕСЛИ:

i := 1; р : = 0;
ПОКА i ? n ВЫПОЛНЯТЬ
  ЕСЛИ a[i] = a[i ? р]
    ТО x := a[i]; р := р + 1; i := i + 1
    ИНАЧЕ i := i + 1
  КОНЕЦ_ЕСЛИ
ВЕРНУТЬСЯ

Мы обнаруживаем, что в нашем случае мы не можем объединить два условия с помощью операции И: если i не удовлетворяет условию, что i не больше n, то нельзя поставить вопрос относительно a[i]. Обрисуем трудность подходящим образом:

— нужно либо добавить в таблицу а поле, которое содержит какую-нибудь несущественную для нас величину (мы к этой величине не обращаемся);

— либо нужно допустить, что операция И не коммутативна. Для вычисления t и u мы вычисляем t, и если результат есть ЛОЖЬ, то все кончено и притом с результатом ЛОЖЬ. В противном случае результат есть значение условия u.

Тогда можно использовать наше преобразование:

i := 1; р := 0;
ПОКА i ? n ВЫПОЛНЯТЬ
  ПОКА i ? n И а[i] = a[i ? р] ВЫПОЛНЯТЬ
    x := а[i]; р := р + 1; i := i + 1
  ВЕРНУТЬСЯ
  ПОКА i ? n И а[i] ? a[i ? р] ВЫПОЛНЯТЬ
    i : = i + 1
  ВЕРНУТЬСЯ
ВЕРНУТЬСЯ

Первый цикл движется по таблице а, пока обнаруживается, что элементы равны между собой. Более точно, р и i изменяются одинаково, так что разность i ? р остается постоянной. Все элементы a[i] сравниваются с одним и тем же элементом, и величина x остается постоянной, равной этому элементу, на протяжении всего цикла.

Второй цикл изменяет i до тех пор, пока не обнаружится пара элементов, отстоящих на р + 1.

Уточним ситуацию выхода из первого внутреннего цикла. Мы собираемся найти конец равнины, которая лучше всех предыдущих, мы фиксируем ее длину р и ее значение х, a i обозначает первый элемент после этой равнины. Мы можем надеяться найти пару j, j ? р с

a[j] = a[j ? р]

только пока j ? р остается на равнине, которую мы собираемся пройти. Наименьшее соответствующее i значение j удовлетворяет условию j ? р = i, или j = i + р.

Следовательно, можно увеличивать i от р в обоих циклах, не меняя действия программы, что ускоряет ее работу.

Чтобы ускорить и первый внутренний цикл, мы присвоим переменной x ее значение перед циклом и сохраним ее начальное значение в j. Так как i ? р остается постоянным, то можно вычислить значение р также и после выхода из цикла. Начальные значения суть i = j и р = р0, а конечные значения i и р удовлетворяют соотношениям i ? р = j ? р0, откуда р = i + р0 ? j:

i := 1; р := 0

ПОКА i ? n ВЫПОЛНЯТЬ

x := а[i]; j := i
  ПОКА i ? n И а[i] = x ВЫПОЛНЯТЬ
    i := i + 1
  ВЕРНУТЬСЯ
  р := i + р ? j; i := i + p
  ПОКА i ? n И а[i] ? a[i ? р] ВЫПОЛНЯТЬ
    i := i + 1
  ВЕРНУТЬСЯ
ВЕРНУТЬСЯ

Вы можете получить эту программу непосредственно, минуя механизм преобразования программ. Но этот способ кажется мне требующим больших умственных усилий,

Может быть, это связано с ходом мыслей, который я приобрел, преподавая[30].

Головоломка 35.

Хорошенько учтите то, что вы знаете: обозначим через и таблицу, которая дает последние элементы наилучших возрастающих последовательностей для (всех возможных) длин от 1 до m.

Покажем сначала, что ui < ui+1. Предположим, что это не так: пусть существует такая последовательность длины i + 1, у которой последний элемент не больше ui. Так как эта последовательность возрастает, то ее предпоследний элемент меньше ui+1 и потому меньше ui. Тогда, удаляя последний элемент этой последовательности, мы получили бы последовательность длины i с последним членом, меньшим ui, что противоречило бы предположению, что ui — последний элемент последовательности длины i с наименьшим возможным последним элементом.

Рассмотрим теперь следующий элемент x нашего вектора. Разместим его в упорядоченной таблице u. Может случиться, что x > um. Тогда элемент x можно присоединить к концу последовательности длины m; тем самым получилась бы (впервые) возрастающая последовательность длины m + 1, которая вследствие своей единственности была бы оптимальна.

Если x меньше u1, то им следует заменить для построения новой наилучшей последовательности с длиной 1. Если же, наконец, оказывается, что ui < x < ui+1, то x можно присоединить к концу последовательности с длиной i + 1, чтобы получить последовательность с длиной i + 1, которая лучше уже известной, и поэтому ui+1 следует заменить на х. Так как и упорядочена, то вы можете разместить в ней x с помощью дихотомического поиска.

Эта операция требует порядка log2m действий для m, не превосходящих n. Так как вам требуется n обращений к таблице, то вы получаете верхнюю границу числа действий порядка n log2n, что чрезмерно завышено.

Головоломка 36.

Предположим, что вы уже прошли первую цепочку вплоть до индекса i ? 1 и получили наилучшие слова длины р, меняющейся от 1 до m. Вы рассматриваете символ в положении i и ищете его в другой цепочке. Его первое положение j1 может быть поставлено в конце некоторого слова — скажем, слова длины р1 — и даст слово длины р1 + 1, которое окажется лучшим, чем предыдущее: действительно, если j1 можно поставить после слова длины p1, то это значит, что его значение больше положения последнего символа в наилучшем слове длины р1, но меньше положения последнего символа в слове длины p1 + 1, Рассмотрим теперь второе появление того же символа во второй цепочке: j2 > j1. Его нельзя поставить в конце елова длины p1 + 1, хотя j2 и больше j1, потому что это — другое появление того же символа, и их не нужно смешивать. Поэтому достаточно ограничиться по поводу этого появления символа обращением к таблице в ее части от p1 + 2 до m.

Головоломка 37.

Рассмотрим прямоугольник пробелов, вертикальная граница которого расположена в столбце j и располагающийся вправо от этого столбца в строках от i1 до i2. Его основание равно inf (l[i1 : i2]), а его площадь есть произведение этого основания на его высоту i2 ? i1 + 1.

Для столбца j нужно найти максимум этой величины, когда i1 меняется от 1 до n ? 1 (n — число строк), а i2 — от i1 + 1 до n.

Когда вы переходите к следующему столбцу, то каждое l уменьшается на 1. В строке, в которой стояла единица, оно становится нулем. Там, где l было равно 0, его нужно вычислить заново. Вы можете попробовать схитрить при вычислении величины inf (l).

В центральном цикле любое введение нового члена может только уменьшить значение минимума.

Головоломка 39.

Рассмотрим значения S для строк i и i' > i. Очевидно

S (i, j) = S (i, i' ? 1) + S (i', j).

Если S (i, i' ? 1) положительно, то S (i, j) > S (i', j) и строка i остается строкой, которая может содержать максимум.

Но если S (i, i' ? 1) < 0, то S (i, j) < S (i', j).

Максимум нужно тогда искать либо среди S (i, j) для j < i', либо среди S (i', j) для j ? i'.

Заметим, что S (i', i') = а[i'].

Мы собираемся пробежать строку S (1, …) вплоть до первого индекса i1 , для которого S становится отрицательным. Тогда мы начнем пробегать строку S (i1 + 1, …), и т. д.

Отсюда следует, что в каждый данный момент нужно знать максимальную подпоследовательность в уже пройденной части; эта подпоследовательность задается номером начала r, номером конца q и своей суммой m. С другой стороны, нужно знать наилучшую заключительную подпоследовательность S (k, i ? 1), предполагая, что вектор пройден вплоть до поля i ? 1. Обозначим через s значение суммы этой заключительной подпоследовательности. Пусть k — номер отроки, дающий этой сумме максимальное значение, а s — сумма всех членов, начиная с k.

Если сумма s положительна, то она и образует максимум на строке с номером k. При переходе к i число a[i] добавляется к s. Если s отрицательно, то новый элемент с номером i и становится оптимальной строчкой, и нужно взять s = а[i].

В этих двух случаях число s нужно сравнить с оптимумом m. Если s оказывается больше, то m нужно заменить на s. Попытаемся составить программу, исходя из того, что мы сейчас обсудим. Нужно уточнить предположение индукции.

Предположим, что вектор пройден от элемента 1 до элемента с номером i ? 1 включительно. Мы знаем лучшую подпоследовательность в этой части: она идет от индекса r до индекса q включительно, и ее сумма равна m: m = S (r, q). С другой стороны, мы внаем наилучшую заключительную подпоследовательность, кончающуюся в i ? 1, т. е. знаем такой индекс k, что сумма S (k, i ? 1) максимальна среди заключительных подпоследовательностей, Значение суммы S (k, i ? 1) равно s. Может случиться, что эта заключительная подпоследовательность является наилучшей возможной во всей пройденной части, и в этом случае имеем r = k, q = i ? 1, s = m. В любом другом случае s ? m. Если i = n ? 1, то весь вектор пройден и получен искомый результат r, q, m.

В противном случае нужно включить элемент a[i]. Если s отрицательно, то a[i] и образует (как единственный участник) наилучший заключительный отрезок; берем k = i, s = a[i]. В противном случае s ? 0 и сумма s + a[i] больше s и больше а[i], и это и есть сумма для наилучшего заключительного отрезка, который по-прежнему начинается с номера k. В этих двух случаях отрезок s становится наилучшим отрезком, если он оказывается больше m.

Для начала можно положиться на пробег вектора, начиная с его единственного первого элемента. В этот момент наилучший сегмент и наилучший заключительный сегмент — это одно и то же.

d := 1; f := 1; m := a[1]; s := m; i := 2
ПОКА i ? n ВЫПОЛНЯТЬ
  ЕСЛИ s < 0 ТО k := i; s := a[i]
    ИНАЧЕ s := s + a[i]
  КОНЕЦ_ЕСЛИ
  ЕСЛИ s > m ТО d := k; f := i; m := s
  КОНЕЦ_ЕСЛИ
  i := i + 1
ВЕРНУТЬСЯ

Эта программа осуществляет пробег вектора a один-единственный раз, что и было предписано в условии. Это очень просто, но это совершенно не очевидно.

Оглавление книги


Генерация: 1.316. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз