Книга: Аналитическая культура

Сбор данных

Сбор данных

Давайте сразу озвучим несколько очевидных требований.

Требование № 1: в компании должен осуществляться сбор данных.

Несомненно, данные — ключевой компонент. При этом речь идет не о любых данных, а о правильных. Необходимо, чтобы набор данных соответствовал вопросу, который требуется решить. Помимо этого, данные должны быть своевременными, точными, чистыми, объективными, и, что важнее всего, они должны заслуживать доверия.

Это не так-то просто. Данные никогда не бывают настолько чистыми, как вам кажется. Они могут быть предвзятыми, что может повлиять на результат анализа, а очистка данных может стать трудоемким и дорогим процессом, требующим времени. Часто приходится слышать, что специалисты по работе с данными до 80 % времени тратят на их сбор, очистку и подготовку и только 20 % — на построение моделей, процесс анализа, визуализацию и формулировку заключений на основе этих данных[5]. Как показывает опыт, это вполне вероятно.

В следующей главе мы поговорим о качестве данных подробнее.

Даже если у вас есть действительно качественные данные и даже если у вас много качественных данных, это означает только то, что вы обладаете этими данными, но не то, что в вашей компании действует управление на основе данных. Некоторые люди, особенно специалисты организаций, предоставляющих услуги по работе с большими данными, называют большие данные практически панацеей: если собирать абсолютно всё, где-то должен попасться алмаз (или крупинки золота, или искомая иголка, или любая другая метафора) и компания станет успешной. Горькая правда в том, что одних только данных недостаточно. Небольшое количество чистой, достоверной информации может быть гораздо более ценно, чем петабайты мусора.

Оглавление книги


Генерация: 0.050. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз