Книга: Учебное пособие по курсу «Нейроинформатика»
Лекция 10. Оценка и интерпретатор ответа
Эта глава посвящена обзору различных видов оценок, способам их вычисления. В ней так же рассмотрен способ определения уровня уверенности сети в выданном ответе и приведен способ построения оценок, позволяющих определять уровень уверенности. Приведен основной принцип проектирования оценки — надо учить сеть тому, что мы хотим от нее получить.
Основные функции, которые должна выполнять оценка:
1. Вычислять оценку решения, выданного сетью.
2. Вычислять производные этой оценки по выходным сигналам сети.
Кроме оценок, в первом разделе этой главы рассмотрен другой, тесно связанный с ней объект — интерпретатор ответа. Основное назначение этого объекта — интерпретировать выходной вектор сети как ответ, понятный пользователю. Однако, при определенном построении интерпретатора и правильно построенной по нему оценке, интерпретатор ответа может также оценивать уровень уверенности сети в выданном ответе.
При частичной аппаратной реализации нейрокомпьютера включение функции оценки в аппаратную часть не эффективно, поскольку оценка является сложным устройством (многие функции оценки включают в себя операции сортировки, и другие аналогичные операции). Однако при аппаратной реализации обученной нейронной сети (даже если предусматривается доучивание сети) аппаратная реализация интерпретатора ответа может оказаться эффективной, поскольку для обученной сети интерпретатор уже не меняется, и по сравнению с оценкой интерпретатор ответа достаточно прост.
- Лекция 15. Работа с базами данных
- 12. Лекция: Создание приложений с графическим интерфейсом пользователя.
- 4. Лекция: Типы данных
- 14. Лекция: Пакет java.util
- 7.6. Оценка эффективности рекламного текста
- Глава 6 Оценка эффективности тренинга
- Пакеты: оценка
- Лекция 11. Ссылки
- 7. Лекция: Преобразование типов
- Лекция 11. История запросов
- Лекция 3. Формы и циклы
- Лекция 6. Пример стандартной анкеты