Книга: Этюды для программистов

Литература

Литература

Ахо, Хопкрофт, Ульман (Aha А. V., Haperoft J. E., Ullman J. D.). The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA, 1974. Section 8.2, pp. 279–286. [Имеется перевод: Ахо А., Хопкрофт Дж., Ульман Дж. Построение и анализ вычислительных алгоритмов. — М.: Мир, 1979, § 8.2, с. 313–320.]

Мы почерпнули алгоритм умножения у Кнута, а алгоритм деления — у Ахо, Хопкрофта и Ульмана; оба алгоритма переработаны для наших целей Эти книги содержат подробную информацию по основам и детальный анализ алгоритмов, включая оценки сложности. Описываются также альтернативные алгоритмы умножения, основанные на быстром преобразовании Фурье[35].

Брент (Brent R. P.). A FORTRAN Multiple-Precision Arithmetic Package, Department of Computer Science, Carnegie-Mellon University, May 1976.

Брент описывает пакет подпрограмм для арифметических действий с высокой точностью, написанных на переносимом, машинно-независимом Фортране. Благодаря включенной в книгу библиографии, вы сможете найти другие работы в этой области. В пакете, предложенном Брентом, не используется алгоритм Тоома—Кука, и автор объясняет почему.

Брент (Brent R. P.). Fast Multiple-precision Evaluation of Elementary Functions, Stanford University, Technical Report STAN-CS-75-515, August 1975.

Томас (Thomas G. В., Jr.). Calculus and Analytic Geometry, 3rd ed. Addison-Wesley, Reading, MA, 1960. Section 16.3—3, pp. 809–812.

Томас приводит сведения по математическому анализу, необходимые для рассмотренных нами вычислений и подобных им; изложение в его книге простое и классическое. Рейтуиснер, а также Шенкс и Ренч — два примера из ряда работ по вычислению ?. В обеих работах дается некоторый исторический обзор, обе они используют подход, предлагаемый Томасом. Брент развивает совершенно новые методы вычисления функций sin, cos, log, arctg и т. д., основанные на эллиптических интегралах. Его алгоритмы работают значительно быстрее описанных нами рядов. Работа Брента пока существует в виде технического доклада.

Кнут (Knuth D. E.). The Art of Computer Programming/Seminumerical Algorithms, Addison-Wesley, Reading, MA, 1969. Section 4.3.3, pp. 258–280. [Имеется перевод: Кнут Д. Искусство программирования для ЭВМ. Т. 2. Получисленные алгоритмы. — М.: Мир, 1977, п. 4.3.3., стр. 314–340[36].]

Рейтуиснер (Reitwiesner G. W.). An ENIAC Determination of ? and e to More than 2000 Decimal Places, Mathematical Tables and Aids to Computation, 4, pp. 11–15, 1950.

Шенкс, Ренч (Shanks D., Wrench J. W.). Calculation of ? to 100 000 Decimals, Mathematics of Computation, 16, pp. 76–99, 1962.

* Кудрявцев Л. Д. Математический анализ. — М.: Высшая школа, 1973.

Оглавление книги


Генерация: 0.073. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз