Книга: Аналитическая культура

Как принимают решения?

Как принимают решения?

Здесь не все так просто. Многие компании искренне верят, что у них процесс принятия решений происходит на основе данных, но, к сожалению, интуиция по-прежнему правит бал. Вот некоторые факты: интуиция и персональный опыт заняли первые две строчки в рейтинге факторов, на основе которых топ-менеджмент принимает решения, согласно отчету компании Accenture в 2009 году (n = 600; рис. 9.2).


Рис. 9.2. Факторы, на основе которых топ-менеджмент принимает решения

Подготовлено по рис. 5 отчета Analytics in Action: Breakthroughs and Barriers on the Journey to ROI компании Accenture

Источник: https://www.accenture.com/us-en/~/media/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Technology_6/Accenture-Analytics-In-Action-Survey.pdf

В исследовании 2014 года, которое проводило аналитическое подразделение журнала Economist, на основе опроса 1135 руководителей высшего звена получилась аналогичная картина (рис. 9.3): интуиция (30 %) и опыт (28 %) в совокупности оставили далеко позади аналитический подход (29 %)[153].


Рис. 9.3. На какой из следующих факторов вы опирались в большей мере при принятии последнего серьезного бизнес-решения?

По результатам другого опроса, в котором приняли участие более 700 топ-менеджеров, 61 % респондентов заявили, что при принятии решений следует прислушиваться к практическому опыту, а не к цифрам, а 62 % опрошенных уверены, что часто необходимо и даже предпочтительно полагаться на интуицию и «мягкие» факторы[154].

Наконец, в опросе IBM с участием 225 руководителей по всему миру интуиция и опыт вновь возглавляют список[155]. См. табл. 9.1.

Таблица 9.1. В какой степени вы руководствуетесь следующими факторами при принятии бизнес-решений?


Как следует из результатов четырех исследований, картина примерно одинаковая.

Тем не менее мне удалось найти один отчет, где подход на основе данных обошел другие (рис. 9.4). Это еще один опрос аналитического подразделения журнала Economist от 2014 года (n = 174)[156].


Рис. 9.4. Какой из следующих пунктов лучше всего описывает ваш личный подход при принятии важных управленческих решений?

См. также рис. 7 отчета Analytics: a blueprint for value, IBM

Источник: http://www-935.ibm.com/services/us/gbs/thoughtleadership/ninelevers/

Как можно объяснить подобные результаты? Почему субъективному опыту и интуиции отдают предпочтение по сравнению с объективным аналитическим подходом? Если не вдаваться в детали, можно выделить три фактора: сами данные, корпоративная культура компании и, наконец, человеческий мозг. Чуть позже я подробнее остановлюсь на каждом из них, чтобы показать некоторые глубинные причины, обусловливающие процесс принятия решений. После этого мы обсудим некоторые возможные решения и подходы.

Прежде всего давайте посмотрим, можем ли мы в принципе быть объективными при принятии решений. Разве мы не всегда прислушиваемся к своим внутренним ощущениям? Что фактически мы имеем в виду на данном этапе аналитической цепочки, говоря об управлении на основе данных?

УПРАВЛЕНИЕ, ИНФОРМИРОВАНИЕ ИЛИ ВЛИЯНИЕ НА ОСНОВЕ ДАННЫХ?

На протяжении всей книги я употребляю термин «управление на основе данных». В главе 1 я представил общий обзор этой концепции и использую ее впоследствии относительно данных. Тем не менее имеет смысл подробнее остановиться на понятии «управление». Насколько мы действительно управляем на основе данных? Может быть, другие понятия, такие как «получение информации на основе данных» или «стимулирование влияния на основе данных», более уместны?

Скотт Беркун затрагивает некоторые действительно важные аспекты в своем посте, озаглавленном The Dangers of Faith in Data («Опасность веры в данные»)[157]. Он утверждает: «Данные не могут управлять. Они не наделены сознанием — это просто набор мертвых цифр. У данных нет интеллекта, следовательно, они неспособны ничем управлять». Думаю, этот пост может послужить хорошей темой для обсуждения с коллегами из аналитического отдела. Сам пост, очевидно, вызовет жаркие споры, но в нем есть некоторые весьма ценные идеи, достойные того, чтобы над ними поразмышляли.

Если управление у вас ассоциируется с управлением автомобилем — данные говорят повернуть налево, и вы поворачиваете налево, — то в большинстве случаев это не сработает практически ни в какой компании, если только она не руководствуется аналитикой очень высокого уровня (глава 2 и глава 5). Если в своей работе вы сталкиваетесь с одними и теми же регулярно повторяющимися ситуациями и у вас разработаны действительно качественные прогностические модели, тогда у вас непременно должны быть решения на основе данных, которые принимаются автоматически. Например, рассмотрим ситуацию пополнения товарных запасов в производственном процессе. Эту функцию можно автоматизировать: вы разрабатываете прогностический алгоритм, который отслеживает уровень продаж и запасы на складе и отправляет заказы на пополнение запасов так, чтобы не образовывалось дефицита товара, но чтобы уровень запасов был минимальным. Или возьмем, например, автоматизированные торговые системы, в которых алгоритмы независимо продают настоящий товар за настоящие деньги. В подобных сценариях человек, принимающий решения, фактически оказывается над системой, а решения, влияющие на компанию, принимаются автоматически на основе данных и алгоритмов. Я согласен со Скоттом, что в большинстве случаев понятие «управление на основе данных» подразумевает несколько иное.

Тем не менее это не единственное значение термина «управление». Одно из его зафиксированных словарных значений — «причина (нечто абстрактное), обусловливающая что-то происходящее». Пример употребления этого значения: «На протяжении ряда лет потребитель управляет развитием экономики». Очевидно, что потребители не сидят в своих гостиных с пультами в руках и не контролируют такие показатели, как, скажем, инфляция, при этом их поведение действительно фактор развития экономики. Уровень потребления населения, объем кредитных обязательств и сбережений — все эти факторы, в совокупности с интерпретацией этих данных главой Федеральной резервной системы, формируют экономику. Например, значения таких ключевых показателей, как уровень безработицы, потребительские расходы и владение недвижимостью, мотивировали Бена Бернанке[158] сохранить процентные ставки на низком уровне для стимулирования экономического роста. Его никто не заставлял это делать, данные не приставляли пистолет к его виску, но направленность этих основных показателей плюс практический опыт и знания в области кредитно-денежной политики действительно обусловили его решения. (Аналогичным образом, я уверен, что в исследованиях, о которых говорилось чуть выше, данные не противопоставлялись интуиции — скорее, речь шла об интуиции в отсутствие любых актуальных данных. Именно это противопоставлялось аналитическому подходу, при котором осуществлялся сбор и анализ данных в сочетании с опытом и знаниями руководителя.) Я склонен понимать под управлением на основе данных именно такое сочетание. Скотт продолжает: «В лучшем случае можно стремиться к тому, чтобы данные оказывали влияние на принятие решений, то есть чтобы опытные руководители располагали адекватными данными, на которые они могут опираться в поисках ответов на правильные вопросы о том, что и насколько эффективно они делают и что, возможно, им следует делать в будущем». Я полностью согласен с этой точкой зрения. По моему мнению, термин «управление на основе данных» можно использовать именно в этом смысле.

Кнапп и др. предпочитают термин «информация на основе данных», по крайней мере, в контексте образовательного управления:

Мы считаем концепцию управления с информацией на основе данных более полезной… В этом случае горизонт мышления и действий расширяется в двух направлениях. Во-первых, появляется возможность избежать ощущения, что данные «управляют» действиями (это отсыл к примеру с управлением автомобилем). Во-вторых, эта концепция предполагает, что данные более полезны для практики управления, чем для принятия решений как таковых… Данные в большей степени задают вопросы и стимулируют размышления, чем указывают на конкретные варианты решения проблемы[159].

Иными словами, авторы выступают за то, что данные обеспечивают информацию для принятия решений (в том смысле, в котором Скотт говорил о влиянии на основе данных), а также помогают ставить вопросы и информируют о том, что происходит в компании, например каковы ключевые показатели эффективности, отчеты и оповещения. Они также цитируют Бернхардта: «Настоящее принятие решений на основе данных лишь частично зависит от данных. В процессе принятия решений основная роль принадлежит четкому видению, которое разделяют все, и управлению».

Все три термина имеют смысл и право на существование. «Влияние», на мой взгляд, — самый слабый и пассивный из них, а «управление» — самый сильный и активный. Независимо от того, какой из этих терминов объективно лучше, арбитром в этом споре стала Google. На момент написания книги по ключевому слову data-influenced («влияние на основе данных») поисковая система выдавала 16 тыс. результатов, по ключевому слову data-informed («информирование на основе данных») — 170 тыс. результатов, и по ключевому слову data-driven («управление на основе данных») — 11,5 млн результатов. Таким образом, правильно это или нет, но именно термин «управление на основе данных» завоевал наибольшую популярность, получил наиболее широкое распространение и используется в этой книге.

Оглавление книги


Генерация: 0.742. Запросов К БД/Cache: 2 / 0
поделиться
Вверх Вниз