Книга: Аналитическая культура

Разработка показателей

Разработка показателей

При выборе или разработке показателей следует руководствоваться несколькими принципами. В идеальном мире показателям должны быть присущи несколько характеристик.

ПРОСТОТА

Разрабатывайте показатель, чтобы он был «таким простым, как только возможно, но не проще» (Эйнштейн).

Какое из этих определений будет понятнее вашим коллегам?

Клиент — человек, который отдает деньги и получает один из товаров компании.

Клиент — человек, купивший товар,

• за исключением покупки подарочного сертификата;

• за исключением тех, кто вернул товар в течение 45 дней с момента покупки с полным возвратом стоимости;

• включая тех, кто активирует подарочный сертификат.

Надеюсь, вы уловили основную мысль.

Простые показатели, по определению, просто объяснить, это означает следующее:

• их суть проще донести до других людей: возникает меньше непонимания;

• их проще реализовать: выше вероятность, что их рассчитают правильно;

• они с большей вероятностью поддаются сравнению с показателями других подразделений или компаний.

Конечно, есть множество обоснованных причин, почему требуется добавить дополнительный бизнес-критерий или пограничный случай для создания более сложного показателя. Возможно, вам необходимо фильтровать источники, чтобы они не содержали необъективные или резко отличающиеся данные. Или вам может понадобиться показатель, по которому выделяется конкретная подгруппа данных, например те случаи обслуживания клиентов, которые стоили компании дороже всего.

Каждый случай следует рассматривать по существу, но постарайтесь избегать дополнительных сложностей с редкими пограничными случаями, которые не добавляют особой ценности для бизнеса и лучшего понимания этого показателя.

Вывод: не стоит чрезмерно усложнять показатели.

ЕДИНЫЙ СТАНДАРТ

По возможности руководствуйтесь общепринятыми стандартами. Например, имея единый, четко определенный показатель отказов, используйте его в своей деятельности, если только у вас нет веской причины для создания своего собственного варианта этого показателя. Если в розничной торговле проходимость торговой точки считается по количеству вышедших из магазина, используйте этот показатель, а не считайте количество вошедших, даже если эти показатели сопоставимы концептуально и по своим значениям. Например, при отслеживании ежемесячной активности пользователей Facebook включает в подсчет только тех, кто залогинился на сайте, в то время как Yelp включает и эту категорию и тех, кто использует гостевой доступ.

Применение общепринятых стандартов вызовет меньше непонимания, особенно у коллег, пришедших из других компаний. К тому же вам будет легче сравнивать свои показатели с показателями других компаний отрасли, то есть анализировать результаты своей работы относительно наиболее эффективных практик в отрасли.

Еще важнее, чтобы все показатели были стандартизированы в рамках одной компании. Мне доводилось наблюдать, как разные подразделения были уверены, что применяют один и тот же показатель, и даже описывали его в одинаковых терминах, но на практике реализация этого показателя в таблицах или системах этих подразделений значительно различалась. Их цифры не совпадали, что приводило к ожесточенным спорам.

Оптимальный вариант — иметь единый централизованный, автоматический, документально подтвержденный «источник истины», из которого бы черпали информацию разные подразделения. Тогда вы сможете использовать результаты анализа и выводы коллег в полной уверенности, что вы сравниваете подобное с подобным. В этом случае становится проще создать единое хранилище результатов аналитической работы и корпоративных знаний о причинных факторах в бизнесе (или о рынке), которому можно доверять и использовать.

Вывод: применяйте общепринятые показатели, если только у вас нет веских причин от них отклониться. При использовании нестандартных показателей зафиксируйте документально, как и почему они нестандартные.

ДОСТОВЕРНОСТЬ

Показатели должны быть достоверными. Это означает, что их среднее числовое значение должно быть приближено к истинному теоретическому среднему значению (см. рис. 6.1). Если использовать метафору стрельбы из лука, то стрела должна попасть точно в мишень.


Рис. 6.1. Точность (в стрельбе есть такой термин, как «кучность» — группировка точек падения снарядов на ограниченной площади) и достоверность (по аналогии со стрельбой это меткость попадания в мишень) на примере двухмерных данных. Недостоверный показатель необъективен, так как его среднее значение системно отличается от истинного среднего значения. Точность показателя отражает его вариативность: насколько будет отличаться среднее значение, если вы повторите эксперимент несколько раз и соберете новые выборки такого же размера

Возьмем, например, объем выручки от продаж на Amazon. Показатель среднего объема выручки за исключением суммы от продажи книг — неточное среднее значение совокупного объема выручки от всех продаж. Этот показатель необъективен. В главе 2 мы уже обсуждали примеры, когда отсутствующие данные приводили к искажению общей картины. Например, средний уровень удовлетворенности клиентов не отражает действительность, если недовольные клиенты из-за задержки доставки товара пропустили дедлайн по опросу и не предоставили свои ответы. В этом примере показатель степени удовлетворенности клиентов завышен по сравнению с его истинным более низким значением.

При разработке показателей постарайтесь учесть все потенциальные источники искажения, как в данных, так и в самом показателе. В главе 2 мы обсуждали некоторые источники необъективности при сборе данных. С точки зрения показателя подумайте обо всех возможных фильтрах при сборе данных, а также о любых скрытых или устаревших «поправочных коэффициентах».

Представьте себе стрелка, который готовится стрелять по дальней мишени и пользуется оптическим прицелом. При стрельбе следует учесть силу и направление ветра, влияющие на траекторию движения пули. Поэтому стрелок регулирует прицел — «поправочный коэффициент» — с поправкой на ветер. При этом если сила или направление ветра изменятся, то эта поправка окажется устаревшей, пули больше не попадут в цель. Внешние обстоятельства часто меняются, а потому необходимо внимательно следить за актуальностью действующих моделей и поправочных коэффициентов.

То же самое верно и в бизнесе. В Warby Parker мы используем электронные устройства для подсчета количества посетителей, вошедших и вышедших из наших розничных магазинов. Одно из возможных применений этих данных — для вычисления показателя конверсии торговой точки, то есть количества посетителей, зашедших в магазин и совершивших какую-нибудь покупку. В одном из таких магазинов персонал может попасть на склад с товаром и вернуться в торговый зал только через главный вход: эти передвижения точно так же считались электронными приборами, из-за чего показатель конверсии получался заниженным. Мы постарались исправить ситуацию, разработав статистическую модель, которая для конкретного дня недели и конкретного уровня занятости оценивала соотношение трафика персонала и посетителей магазина в качестве корректирующего фактора. В результате показатель конверсии стал гораздо более реалистичным. Следует учесть, что подобные модели могут терять свою актуальность при изменении внешних условий, например покупатели могут быть более мотивированы совершать покупки по выходным. Нужно либо периодически перенастраивать модель, либо, как мы пробуем делать сейчас, использовать более совершенные технологии, способные отличить персонал от посетителей и не включать сотрудников при подсчете трафика.

ТОЧНОСТЬ

Показатели должны отличаться точностью. Это означает, что при повторении эксперимента в тех же самых условиях значения должны получаться такими же. По аналогии со стрельбой это можно назвать кучностью: все попадания в мишень должны быть рядом на ограниченной площади. Один из инструментов, или рычагов, для контроля точности — размер выборки. Чем больше выборка, тем меньше стандартная ошибка. Однако эта взаимосвязь не линейная. Так как стандартная ошибка среднего значения равна стандартному отклонению, деленному на квадратный корень размера выборки, чтобы уменьшить стандартную ошибку в два раза, нужно в четыре раза увеличить размер выборки.

Сочетание достоверности (меткости попадания в мишень) и точности (кучности стрельбы) показано на рис. 6.1. Если у вас нет подтвержденной справочной информации, вы можете не понять, что ваши показатели недостоверны. Однако вы, скорее всего, рано или поздно поймете, если ваши показатели не отличаются точностью (нестабильны).

Вывод: стремитесь к достоверности и точности показателей и учитывайте издержки и преимущества крупных выборок.

ОТНОСИТЕЛЬНЫЕ ИЛИ АБСОЛЮТНЫЕ ПОКАЗАТЕЛИ

Очень важное решение — относительные или абсолютные показатели следует применять. Этот выбор определяет разработку показателей, которые при одном сценарии показывают очень разные картины.

Представьте, что в какой-то компании ведется классификация клиентов и 25 % от общего количества относятся к категории VIP (например, они приобрели продукцию компании на сумму больше 1 тыс. долл.). Через полгода у этой компании только 17 % VIP-клиентов. Черт, что случилось? Они что, ушли? Как все исправить?

Предположим, что в этот период усилия компании были сосредоточены на привлечении новых клиентов. Тогда, вероятно, общее количество клиентов увеличилось (показано оранжевым на рис. 6.2), а количество VIP-клиентов могло остаться тем же, при этом их пропорция уменьшилась. Фактически вполне возможно даже, что количество VIP-клиентов тоже увеличилось, но при этом пропорция стала ниже.


Рис. 6.2. У компании 25 % VIP-клиентов. В верхнем сценарии компания сосредоточила усилия на привлечении новых клиентов (показано оранжевым). Это привело к увеличению общего количества клиентов, количество VIP-клиентов осталось прежним, но пропорция уменьшилась. В нижнем сценарии компания сосредоточила усилия на работе с текущими клиентами. Пропорция и количество VIP-клиентов стали выше, но общего увеличения клиентской базы не произошло

И наоборот, предположим, что через полгода мы наблюдаем значительное увеличение количества VIP-клиентов и их пропорции. Это может отражать здоровый рост клиентской базы, но, с другой стороны, роста клиентской базы может и не быть, если усилия компании были сосредоточены исключительно на возвращении покупателей и увеличении количества повторных покупок (рис. 6.2, внизу). (Для многих компаний второй сценарий с увеличением количества повторных покупок более предпочтителен по сравнению с увеличением клиентской базы, так как стоимость привлечения новых клиентов, как правило, слишком высока.)

Как видите, выбор между применением абсолютных (количество VIP-клиентов) или относительных (их пропорция) показателей может привести к очень разным интерпретациям.

Вывод: тщательно взвесьте, что вы хотите узнать, и выберите абсолютный или относительный показатель, который будет адекватно отображать нужные вам изменения.

РОБАСТНОСТЬ

Определяйте статистически робастные[93] показатели, то есть те, что относительно нечувствительны к отдельным резко отличающимся значениям.

Рассмотрим следующий пример из San Francisco Chronicle:

Средняя заработная плата специалистов технического профиля в центральной части полуострова Сан-Франциско (округ Сан-Матео) в прошлом году составила 291 497 долл. Возможное объяснение отклонения: глава компании Facebook Марк Цукерберг получил всего один доллар в качестве зарплаты, но заработал 3,3 млрд долл. на опционах на покупку акций в 2013 году. Если вычесть 3,3 млрд долл. из общей суммы, то среднее значение получится примерно 210 тыс. долл.[94]

Использовать среднее значение в данном случае не следует, учитывая высокую степень позитивной асимметрии в данных по заработной плате. Среднее значение получается существенно завышенным (более чем на 35 %) из-за одной резко отличающейся переменной. В данном случае гораздо рациональнее выбрать показатель медианы, так как он более устойчив к резко отличающимся значениям и лучше отражает средние данные.

Стоит отметить, что в некоторых случаях могут понадобиться показатели, которые особенно чувствительны к пограничным значениям. Пиковая нагрузка на веб-сайт должна охватывать редкие максимальные значения, которые должны быть включены в диапазон. Оценить или визуализировать робастность можно с помощью повторной выборки. Возьмите набор данных и вычислите показатель. Повторите расчеты несколько раз, заменяя набор данных; получив ряд значений показателя, составьте их распределение. Насколько это распределение отличается от того, что вы ожидали или хотели бы увидеть?

Вывод: примените разведочный анализ (например, постройте гистограмму или диаграмму рассеяния), чтобы лучше понять данные, и на его основании выберите робастные показатели.

ПРЯМАЯ СВЯЗЬ

Постарайтесь выбирать показатели, которые непосредственно измеряют интересующий вас процесс. К сожалению, не все можно измерить и оценить количественно, поэтому иногда приходится довольствоваться косвенными или приближенными показателями.

Кэти О’Нейл привела наглядный пример, как результаты тестов учеников приблизительно отражают качество обучения[95]. Чем больше расстояние между самим процессом и приближенным показателем, тем менее достоверным и полезным будет его значение. В результате вы можете начать оптимизировать приближенный показатель, что может оказаться совсем не тем, что вы действительно хотите оптимизировать.

Сьюзан Веббер рассказала о тестировании вкусов кока-колы и о выпуске на рынок нью-кок в 1980 году[96]. Компания провела маркетинговые исследования, которые показали в высшей степени положительные результаты, даже по сравнению с традиционной кока-колой. Однако когда новый продукт вывели на рынок, его продажи провалились. Почему?

Покупатели сочли напиток слишком сладким. Дело в том, что при тестировании вкуса в ходе маркетинговых исследований участники фокус-группы пробовали напиток маленькими глотками, в результате чего степень его сладости не так раздражала. Если бы они пробовали напиток «как в жизни» (сделали бы большой глоток жарким днем), то оптимизировали бы свое восприятие в соответствии с действительностью.

Вывод: везде, где возможно, оснащайте свои процессы и системы контрольно-измерительными средствами и старайтесь максимально избегать приближенных показателей. Не всегда стоит идти по пути наименьшего сопротивления и использовать данные, оказавшиеся под рукой. Сконцентрируйтесь на данных, которые вам следовало бы собрать и использовать, если они в большей степени отвечают вашим потребностям.

Оглавление книги


Генерация: 0.913. Запросов К БД/Cache: 3 / 0
поделиться
Вверх Вниз