Книга: Новый ум короля: О компьютерах, мышлении и законах физики

Теория сложности

Теория сложности

Рассуждения о природе, возможности построения, существования и ограничениях алгоритмов, которые я привел в предыдущих главах, были по большей части «нестрогими». Я совсем не касался вопроса о возможности практического применения упоминавшихся алгоритмов. Даже в тех задачах, где существование алгоритмов и возможные способы их построения очевидны, все же может потребоваться довольно много труда для их воплощения в нечто полезное с точки зрения практического использования. Иной раз небольшая догадка или искусный ход могут в значительной степени упростить алгоритм или же многократно увеличить его быстродействие. Техническая сторона этих вопросов часто бывает очень сложна, и в последние годы в различных направлениях прилагалось много усилий в области построения, понимания и совершенствования алгоритмов — быстро растущем и развивающемся поле деятельности для пытливых умов. Мне представляется не слишком уместным углубляться здесь в тонкости подобных вопросов. Однако, существует довольно много абсолютных ограничений общего характера (известных или предполагаемых) на возможное повышение быстродействия алгоритма. Оказывается, что среди алгоритмических по своей природе задач существуют определенные классы проблем, решать которые с помощью алгоритмов несоизмеримо труднее, чем остальные. Такие задачи можно решать только с помощью очень медленных алгоритмов (или, допустим, алгоритмов, требующих чрезмерно больших ресурсов для хранения информации, и т. п.). Теория, в которой рассматриваются подобные вопросы, носит название теории сложности.

Теория сложности занимается не столько изучением трудностей, связанных с решением отдельных задач, сколько с бесконечными семействами задач, в каждом из которых любая задача может быть решена с помощью одного и того же алгоритма. Различные задачи такого семейства будут отличаться по «размеру», который выражается некоторым натуральным числом п. (Чуть позднее я объясню более подробно, как фактически этот номер п характеризует размер задачи.) Время, требуемое для решения конкретной задачи из рассматриваемого класса, — а вернее, количество элементарных шагов, — дается некоторым числом N, зависящим от n. Для определенности договоримся, что N — это наибольшее число шагов среди всех задач данного размера n, которое может понадобиться алгоритму для решения. При этом, с ростом n увеличивается также и N. На самом деле, N скорее всего будет расти гораздо быстрее n. Например, N может быть примерно пропорционально n2, или n3 или, скажем, 2n (которое при больших n значительно превосходит n2, n3n4, n5 и, вообще, nr для любого фиксированного n), или даже 22n (которое, в свою очередь, растет еще быстрее).

Конечно, число «шагов» зависит от типа вычислительной машины, на которой применяется алгоритм. Если эта машина принадлежит классу машин Тьюринга, описанному в главе 2, у которых есть только одна лента — что довольно неэффективно — то число N может расти еще быстрее (или, эквивалентно, машина будет работать медленнее), чем в случае с двумя и более лентами. Чтобы избежать этих неопределенностей, вводится широкая классификация всех возможных зависимостей N(n), так что, независимо от типа используемой машины Тьюринга, величина темпов роста N будет всегда попадать в одну и ту же категорию. Одна из таких категорий, известная как Р (от названия «полиномиальное время»), включает все темпы роста, которые являются фиксированными кратными n или n2, n3, n4, n5…. [91]. Это означает, что для любой задачи, попадающей в эту категорию Р (под «задачей» здесь фактически понимается семейство задач, решаемых с помощью единого алгоритма), будет справедлива оценка

N ? K x nr

где К и r — константы, не зависящие от n. То есть N не может быть больше, чем число, кратное n в некоторой фиксированной степени.

Простой, пример задачи, безусловно относящейся к Р, — перемножение двух чисел. Чтобы объяснить это, я должен сначала описать, как число n характеризует размер двух чисел, которые надо перемножить. Мы можем принять, что оба числа представлены в двоичной записи и что n/2 — это просто количество бинарных разрядов в каждом из чисел, так что общее число цифр (то есть битов) у обоих равно n. (Если одно из чисел длиннее другого, то мы можем записать более короткое, начав с дополнительной последовательности нулей, тем самым выровняв их по длине.) Например, если n = 14, мы бы могли рассмотреть произведение

1011010 x 0011011,

которое является, на самом деле, произведением 1011010 х 11011, но с добавленными перед более коротким числом нулями. Выполнить требуемое действие проще всего путем умножения «в столбик»:


учитывая, что в двоичной системе 0x0=0, 0x1=0, 1x0=0, 1x1=1, 0+0=0, 0+1=1, 1+0=1, 1 + 1 = 10. Число отдельных двоичных перемножений равно (n/2) х (n/2) = n2/4, а число отдельных двоичных сложений может доходить до n2/4 — n/2 (включая перенос). Это дает n2/2 — n/2 отдельных арифметических операций — и мы должны еще учесть несколько дополнительных логических шагов, которые задействованы в операциях переноса. Тогда общее число шагов, игнорируя члены более низкого порядка, равно по существу N = п2/2, что, очевидно, является полиномом[92].

В общем случае, мы полагаем «размер» n задачи из некоторого класса равным полному количеству двоичных цифр (или битов), необходимых для задания свободных входных данных в задаче указанного размера. Другими словами, для произвольного размера n задача может иметь до 2n различных вариантов (ибо для каждой из цифр имеется две возможности — 0 или 1, — а общее количество цифр равно n), и все они должны одинаково обрабатываться алгоритмом не более, чем за N шагов.

Существует масса примеров (классов) задач, которые не «принадлежат» множеству Р. Например, чтобы вычислить 22r для заданного натурального r, нам только для записи конечного ответа потребуется около 2n шагов (где n — число цифр в двоичной записи r), не говоря даже о самом вычислении. Операция по вычислению 

потребует уже 22n шагов для записи и так далее. Значения этих выражений намного превосходят те, которые дают полиномы для тех же n, и, следовательно, не могут принадлежать Р.

Больший интерес представляют задачи, в которых ответ может быть записан и даже проверен на верность за «полиномиальное» время. Есть очень важная категория (алгоритмически решаемых классов) проблем, обладающих таким свойством. Их называют NP-задачами (классом задач). Точнее, если некоторая задача из класса NP имеет решение, то алгоритм позволит получить это решение, которое затем может быть проверено за «полиномиальное» время. Если же задача не имеет решения, то алгоритм сообщит об этом, но при этом не оговаривается необходимость проверки этого факта за «полиномиальное» или какое бы то ни было время[93].

NP-задачи встречаются во многих областях, причем как в математике, так и в повседневной практике. Я приведу здесь только один простой математический пример: задачу нахождения так называемого «гамильтонова цикла» на графе (довольно устрашающее название для чрезвычайно простой идеи). Под графом подразумевается конечный набор точек, или «вершин», некоторое количество пар которых соединено между собой линиями — «сторонами» графа. (Нас не интересуют сейчас геометрические или линейные свойства, а только то, какие вершины соединяются друг с другом. Поэтому не имеет значения, лежат ли все вершины в одной плоскости — если нас не волнует возможность пересечения двух сторон — или же в трехмерном пространстве.) Гамильтонов цикл — это замкнутый маршрут (петля), состоящий только из сторон графа и проходящий не более одного раза через любую из вершин. Пример графа с изображенным на нем гамильтоновым циклом показан на рис. 4.14. Задача нахождения гамильтонова цикла заключается в том, чтобы определить, существует ли гамильтонов цикл на рассматриваемом графе, и если существует, то явным образом указать его.


Рис. 4.14. Граф с гамильтоновым циклом (изображен зачерненными линиями). Существует только один гамильтонов цикл, как читатель может сам убедиться

Есть разные способы представления графов на языке двоичных чисел. Неважно, какой из этих способов применяется в том или ином случае. Один из методов заключается в том, чтобы пронумеровать вершины 1, 2, 3, 4, 5…, а потом перечислить пары в некотором подходящем фиксированном порядке:

(1,2), (1,3), (2,3), (1,4), (2,4), (3,4), (1,5), (2, 5), (3,5), (4, 5), (1,6)….

Затем мы на место каждой пары помещаем «1», если пара соединена стороной графа, и «О» — в противном случае. Тогда двоичная последовательность

10010110110…

будет означать, что вершина 1 соединяется с вершинами 2, 4 и 5; вершина 3 — с вершинами 4 и 5; вершина 4 — с вершиной 5, и т. д. (в соответствии с рис. 4.14). Гамильтонов цикл может быть задан по желанию просто как подмножество этих сторон, которое было бы описано такой же двоичной последовательностью, как и ранее, но со значительно бо?льшим числом нулей. Процедура проверки в этом случае проходит несравненно быстрее, чем процесс непосредственного построения гамильтонова цикла. Все, что нужно выяснить, — это является ли построенный цикл действительно циклом, т. е. принадлежат ли его стороны исходному графу, и что каждая вершина графа используется ровно два раза — по одному разу на концах каждой из входящих в нее двух сторон.

Такую процедуру проверки можно легко завершить за «полиномиальное» время.

На самом деле эта задача относится не только к NP, но к так называемой категории NP-полных задач. Это означает, что любая другая NP-задача может быть сведена к данной за «полиномиальное» время — так что, если бы кому-нибудь удалось отыскать алгоритм для решения задачи нахождения гамильтонова цикла за «полиномиальное» время (т. е. показать, что задача гамильтонова цикла действительно принадлежит Р), то это будет означать, что все NP-задачи будут лежать в Р! Это имело бы очень важные следствия. В широком смысле, задачи из Р считаются «податливыми» (иначе говоря, «решаемыми за приемлемое время») для относительно больших n, на быстром современном компьютере; тогда как задачи из NP, но не лежащие в Р, считаются «неподатливыми» (т. е. решаемыми в принципе, но «нерешаемыми практически») для тех же n — независимо от того, на какое разумно предсказуемое увеличение быстродействия компьютеров рассчитывать в будущем. (Реальное время, которое бы потребовалось для достаточно больших n при решении «неподатливой» задачи, легко превосходит возраст вселенной, что никак не предполагает практическое использование такого подхода!) Любой «умный» алгоритм для решения задачи о нахождении гамильтонова цикла за «полиномиальное» время мог бы быть превращен в алгоритм для решения всех прочих NP-задач, и тоже за «полиномиальное» время!

Другая задача, также являющаяся NP-полной[94] — «задача коммивояжера», которая во многом похожа на гамильтонов цикл, если не считать того, что разным сторонам приписаны числа и ставится цель отыскать гамильтонов цикл с минимальной суммой этих чисел (минимальной «длиной» пути, проделанного коммивояжером). Аналогично, «полиномиальное» время решения, достигнутое в «задаче коммивояжера», привело бы к возможности решать все NP-задачи за «полиномиальное» время. (Если такое решение когда-нибудь найдется, то новость об этом сразу попала бы на первые страницы! Ведь к NP-задачам относится, в частности, факторизация больших целых чисел, которая применяется в секретных шифровальных системах, представленных за последние несколько лет. Если эта задача окажется решаемой за «полиномиальное» время, то, возможно, такие шифры могли бы быть взломаны при помощи мощных современных компьютеров; если же нет — эти шифры останутся неприступными. См. Гарднер [1989].)

Эксперты, как правило, полагают, что используя устройство, работающее по принципу машины Тьюринга, невозможно за «полиномиальное» время решить NP-полную задачу; и что, следовательно, Р и NP — неэквивалентны. Это мнение, похоже, верно, хотя пока его никто не смог доказать. И это остается наиболее важной и на сегодняшний день нерешенной задачей теории сложности.

Оглавление книги


Генерация: 1.414. Запросов К БД/Cache: 3 / 0
поделиться
Вверх Вниз