Книга: Основы объектно-ориентированного программирования

Толерантные модули

Толерантные модули

(При первом чтении этот раздел можно опустить или ограничиться его беглым просмотром.)

Простые, но не защищенные модули могут быть не достаточно устойчивыми для использования их у произвольных клиентов. В таких случаях возникает необходимость создания нескольких классов, играющих роль фильтров. В отличие от ранее рассмотренных фильтров, устанавливаемых между внешним миром и обрабатывающими модулями, новые фильтры будут устанавливаться между "беспечными" клиентами с одной стороны и незащищенными классами с другой стороны.

Хотя было показано, что обычно это не лучший подход к проектированию, полезно рассмотреть, как выглядят классы, если использовать толерантный стиль в некоторых особых случаях. Класс STACK3, представленный ниже, иллюстрирует эту идею.

Поскольку классу понадобятся целочисленные коды ошибок, удобно для этой цели использовать ранее не введенную нотацию "unique" для целочисленных констант. Если объявить множество атрибутов следующим образом:

a, b, c, ...: INTEGER is unique

то в результате этого объявления a, b, c получат последовательно идущие целочисленные значения. Эти значения будут даваться компилятором с гарантией того, что все объявленные таким образом константы получат различные значения (будут уникальными). По принятому соглашению, всем объявляемым таким образом константам даются имена, начинающиеся с буквы в верхнем регистре и с остальными символами в нижнем регистре, например Underflow.

Вот написанная в этом стиле толерантная версия нашего класса стек. Заметьте, что этот текст, возможно пропущенный при первом чтении, включен только для понимания толерантного стиля. Он не является примером рекомендуемого стиля проектирования по причинам, обсуждаемым ниже, но которые достаточно ясны при просмотре этого текста.

indexing
description: "Стеки: Структуры с политикой доступа Last-In, First-Out %
%Первый пришел - Последний ушел, с фиксированной емкостью; %
%толерантная версия, устанавливающая код ошибки в случае %
%недопустимых операций."
class STACK3 [G] creation
make
feature - Initialization (Инициализация)
make (n: INTEGER) is
-- Создать стек, содержащий максимум n элементов, если n > 0;
-- в противном случае установить код ошибки равным Negative_size.
-- Без всяких предусловий!
do
if capacity >= 0 then
capacity := n
create representation.make (capacity)
else
error := Negative_size
end
ensure
error_code_if_impossible: (n < 0) = (error = Negative_size)
no_error_if_possible: (n >= 0) = (error = 0)
capacity_set_if_no_error: (error = 0) implies (capacity = n)
allocated_if_no_error: (error = 0) implies (representation /= Void)
end
feature - Access (Доступ)
item: G is
-- Элемент вершины, если существует; в противном случае
-- значение типа по умолчанию.
-- с ошибкой категории Underflow.
-- Без всяких предусловий!
do
if not empty then
check representation /= Void end
Result := representation.item
error := 0
else
error := Underflow
-- В этом случае результатом является значение по умолчанию
end
ensure
error_code_if_impossible: (old empty) = (error = Underflow)
no_error_if_possible: (not (old empty)) = (error = 0)
end
feature -- Status report (Отчет о статусе)
empty: BOOLEAN is
-- Пуст ли стек?
do
Result := (capacity = 0) or else representation.empty
end
error: INTEGER
-- Индикатор ошибки, устанавливаемый различными компонентами
-- в ненулевое значение, если они не могут выполнить свою работу
full: BOOLEAN is
-- Заполнен ли стек?
do
Result := (capacity = 0) or else representation.full
end
Overflow, Underflow, Negative_size: INTEGER is unique
-- Возможные коды ошибок
feature -- Element change (Изменение элементов)
put (x: G) is
-- Добавить x на вершину, если возможно; иначе задать код ошибки.
-- Без всяких предусловий!
do
if full then
error := Overflow
else
check representation /= Void end
representation.put (x); error := 0
end
ensure
error_code_if_impossible: (old full) = (error = Overflow)
no_error_if_possible: (not old full) = (error = 0)
not_empty_if_no_error: (error = 0) implies not empty
added_to_top_if_no_error: (error = 0) implies item = x
one_more_item_if_no_error: (error = 0) implies count = old count + 1
end
remove is
-- Удалить вершину, если возможно; иначе задать код ошибки.
-- Без всяких предусловий!
do
if empty then
error := Underflow
else
check representation /= Void end
representation.remove
error := 0
end
ensure
error_code_if_impossible: (old empty) = (error = Underflow)
no_error_if_possible: (not old empty) = (error = 0)
not_full_if_no_error: (error = 0) implies not full
one_fewer_item_if_no_error: (error = 0) implies count = old count - 1
end
feature {NONE} - Implementation (Реализация)
representation: STACK2 [G]
-- Незащищенный стек используется для реализации
capacity: INTEGER
-- Максимальное число элементов стека
end - class STACK3

Операции этого класса не имеют предусловий (более точно, имеют True в качестве предусловия). Результат выполнения может характеризовать ненормальную ситуацию, постусловие переопределено так, чтобы позволить отличать корректную и ошибочную обработку. Например, при вызове s.remove, где s это экземпляр класса STACK3, в корректной ситуации значение s.error будет равно 0; в ошибочной - Underflow. В последнем случае никакая другая работа выполняться не будет. Клиент несет ответственность за проверку s.error после вызова. Как уже отмечалось, у общецелевого модуля, такого как STACK3 нет способа решить, что делать в ошибочной ситуации: выдать сообщение об ошибке, произвести корректировку ситуации...

Такие модули фильтры служат для отделения нормальных ситуаций от ситуаций, обрабатывающих ошибки. В этом отличие корректности от устойчивости, объясняемое в начале книги: написание модуля корректно выполняющего свою задачу в предусмотренных случаях - одна задача, сделать так, чтобы и в непредусмотренных ситуациях обработка выполнялась сносно - совсем другая задача. Обе они необходимы, но их нужно разделять и управлять ими по-разному. Одна из типичных ошибок, приводящая к безнадежной сложности программных систем, - в алгоритм, делающий действительно нечто полезное, добавляется куча проверок на безнадежные ситуации и из лучших побуждений делается попытка управлять ими. В таких системах путаница начинает расти как грибы после дождя.

Несколько технических замечаний к приведенному примеру класса.

[x]. Экземпляр STACK3 - содержит атрибут representation, представляющий ссылку на экземпляр STACK2, содержащий, в свою очередь, ссылку на массив. Эти обходные пути пагубно отражаются на эффективности, избежать этого можно введением наследования, изучаемого в последующих лекциях.

[x]. Булева операция or else подобна or, но если первый операнд равен True, игнорирует второй операнд, возможно неопределенный в такой ситуации.

[x]. Инструкция check, используемая в put и remove, служит для проверки выполнения некоторых утверждений. Она будет изучаться позднее в этой лекции.

В заключение: вы, наверное, отметили тяжеловесность STACK3 в сравнении с простотой STACK2, достигнутой благодаря предусловиям. Это хороший пример, показывающий, что толерантный стиль может приводить к бесполезно усложненному ПО. Требовательный стиль, по контрасту, вытекает из общего духа Проектирования по контракту. Попытка управлять всем, - и возможными и невозможными случаями - совсем не лучший способ помочь вашим клиентам. Если вместо этого вы построите классы, влекущие возможно более строгие условия на их использование, точно опишите эти условия, включив их в документацию класса, вы реально облегчите жизнь вашим клиентам. Требовательная любовь (tough love) может быть лучше всепрощающей; лучше эффективная поддержка функциональности с проверяемыми ограничениями, чем страстная попытка предугадать желания клиентов, принятие возможно неадекватных решений, жертвой чего становятся простота и эффективность.

Для модулей, чьими клиентами являются другие программные модули, требовательный подход обычно является правильным выбором. Возможным исключением становятся модули, предназначенные для клиентов, чьи авторы используют не ОО-языки и могут не понимать основных концепций Проектирования по контракту.

Толерантный подход остается полезным для модулей, принимающих данные от внешнего мира. Как отмечалось, в этом случае строятся фильтры, отделяющие внешний мир от обрабатывающих модулей. Класс STACK3 иллюстрирует идеи построения подобных фильтров.

Оглавление книги


Генерация: 1.229. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз