Книга: Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Обесценивание экспертов

Обесценивание экспертов

В фильме «Человек, который изменил всё» (о том, как бейсбольная команда «Окленд Атлетикс» стала чемпионом, применив аналитику и новые типы измерений) есть замечательные сцены, в которых старые седовласые скауты, собравшись за столом, обсуждают игроков. Зритель невольно съеживается — не только потому, что сцены демонстрируют, как принимаются решения, когда под рукой нет данных, но и потому, что каждый из нас наверняка сталкивался с ситуациями, когда определенность зависела от настроения, а не от науки.

— У него фигура настоящего бейсболиста… хорошая внешность, — говорит один скаут.

— У него отличный замах. От его биты мячи взрываются. Он бьет самым концом биты, да так мощно, что звук сломанной биты разносится по всему стадиону, — вмешивается хрупкий седой старичок со слуховыми аппаратами.

— Ужасный треск. И без усилий, — подтверждает другой скаут.

Третий скаут встревает в разговор:

— У него страшная подружка.

— Ну и что? — спрашивает скаут, ведущий встречу.

— Это признак неуверенности, — констатирует скептик.

— Ясно, — довольно говорит ведущий, готовый продолжить.

После ряда шутливых перепалок в беседу вступает скаут, который до этого отмалчивался:

— У этого парня есть характер, и это очень хорошо. Он из тех парней, которых видно за версту.

Другой добавляет:

— Да, на него приятно посмотреть. Он сыграет на поле заметную роль. Ему только нужно игровое время.

— Я просто говорю, что его подружка на троечку в лучшем случае!

Эта сцена прекрасно показывает недостатки человеческих суждений. То, что считается аргументированной дискуссией, по сути, не имеет конкретных оснований. Решения о заключении договоров с игроками на миллионы долларов принимаются на основе голой интуиции, без учета объективных показателей. Да, это всего лишь кино, но в реальной жизни все бывает столь же глупо. Сцена иронична в силу своей универсальности: такие же пустые рассуждения слышны повсюду — от залов заседаний правления в Манхэттене и Овального кабинета в Белом доме до кафе и обычных кухонь.

Фильм «Человек, который изменил всё», снятый по книге Майкла Льюиса, рассказывает правдивую историю Билли Бина — генерального менеджера «Окленд Атлетикс», который отбросил вековую традицию назначения игроков в пользу математически ориентированного подхода с новой системой показателей. Статистические подходы, такие как «средний уровень», канули в прошлое. На смену им пришли на первый взгляд непривычные суждения об игре, например «процент попадания на базу». Подход, основанный на данных, показал скрытую сторону спорта, которая, как правило, ускользала от внимания за привычными атрибутами вроде арахиса и попкорна. Главное, чтобы игрок попадал на базу, и неважно, как он это делал — благодаря своей скорости или хитрости. Когда данные показали, что кража баз является неэффективной, со сцены ушел один из самых интересных, но наименее «продуктивных» элементов игры.

На фоне острой полемики Бин закрепил в руководстве метод, известный как «саберметрика» (аббревиатура англ. Society for American Baseball Research — Общество изучения американского бейсбола), который до этого не пользовался особой популярностью. Он бросил вызов догме скамейки запасных, как в свое время гелиоцентрические взгляды Галилея пошатнули авторитет католической церкви. В конечном счете этот метод дал возможность многострадальной команде Бина финишировать первой в Американской лиге сезона 2002 года, выиграв 20 игр подряд. С тех пор статистика вытеснила скаутов как крупных специалистов в спорте, а множество других команд стали усиленно перенимать саберметрику.

Подобным образом большие данные окажут существенное влияние на то, как решения, принимаемые на их основе, будут дополнять или отклонять человеческие суждения. Эксперты в предметной области и основные специалисты утратят часть своего блеска на фоне специалистов по статистике и аналитиков данных, которые не держатся за устаревшие способы ведения дел и позволяют данным «говорить». Эти новые сотрудники будут полагаться на корреляции без предубеждений и предрассудков. Точно так же Мори не принимал за чистую монету все, что умудренные опытом капитаны рассказывали о морских путях за кружкой пива в пабе. Выявляя практические истины, он полагался на объединенные данные. Метод Мори не объяснял, откуда берутся ветры и течения, но для моряков, которые ищут безопасный путь, вопрос почему был менее важен, чем что и где.

Авторитет экспертов в предметных областях ослабевает. Например, в СМИ контент, который создается и публикуется на сайтах, таких как Huffington Post и Gawker, систематически определяется данными, а не исключительно «нюхом» редакторов. Данные лучше, чем чутье опытных журналистов, показывают, что людям хотелось бы прочитать. Coursera, компания по дистанционному обучению, исследует все собираемые ею выбросы данных (например, какой раздел видеолекции студенты просматривали повторно), чтобы узнать возможные неясные или особенно интересные моменты, которые следует учесть в разработке курсов. Раньше у преподавателей не было такой возможности, но ситуация изменилась и педагогика уже не станет прежней. Как мы упоминали, Джефф Безо уволил штатных редакторов Amazon, когда данные показали, что рекомендации, выявленные алгоритмическим путем, стимулировали больше продаж.

Это означает, что навыки, необходимые для достижения успеха в работе, меняются, как и ожидания, возлагаемые на сотрудников организаций. Доктору Макгрегор, которая занимается проблемами недоношенных детей в Онтарио, не обязательно было становиться лучшим врачом в больнице или главным авторитетом в области наблюдения за беременными, чтобы добиться наилучших результатов в лечении своих пациентов. У нее даже нет медицинского образования, разве что степень доктора в области компьютерных наук. Но она поставила себе на службу данные о пациентах, собранные более чем за десятилетний период, которые обрабатываются компьютером, а затем с ее помощью преобразуются в рекомендации по лечению.[124]

Первопроходцы, проявившие себя в сфере больших данных, нередко являются специалистами из других областей: анализа данных, искусственного интеллекта, математики или статистики, которые применяют свои навыки в определенных отраслях. По словам главного исполнительного директора Kaggle Энтони Голдблума, победители конкурсов Kaggle (интернет-платформы для проектов на основе больших данных) редко приходят из сектора, в котором достигли высоких результатов: призовое место занял британский физик, разработавший алгоритмы для прогнозирования претензий по страхованию и выявлению неисправных подержанных автомобилей. Сингапурский страховой статистик победил в конкурсе с проектом прогноза биологических реакций химических соединений.[125] Инженеры отдела по машинному переводу Google отмечают свой успех в переводах на языки, которых никто из них не знает, а специалисты по статистике из отдела машинного перевода Microsoft шутят, что качество переводов улучшается всякий раз, когда команду покидает лингвист.

Разумеется, эксперты в предметных областях не вымрут, но они наверняка утратят свое превосходство. Теперь им придется делить свои лавры со специалистами в области больших данных, а простые корреляции потеснят величие причинно-следственных связей. Это изменит наше отношение к знаниям, ведь мы склонны считать, что люди с узкой специализацией более ценны, чем с широкой: успех сопутствует более глубокому знанию предмета. Экспертные знания, как и точность, подходят для области «малых данных», где вечно не хватает нужной информации, поэтому в поисках правильного пути приходится полагаться на интуицию и опыт. В таких условиях опыт играет важнейшую роль, поскольку только длительное накопление скрытых знаний, которые нельзя передать, вычитать в книгах или даже попросту осознать, может помочь в принятии более взвешенных решений.

Но если у вас нет ничего, кроме данных, из них тоже можно извлечь огромную пользу. Те, кто проанализирует большие данные, увидят всю иррациональность традиционного мышления в прошлом не потому, что умнее, а потому, что имеют данные. (Кроме того, будучи посторонними наблюдателями, они позволят себе оставаться беспристрастными, в то время как эксперты предвзято отстаивают позиции своей предметной области.) Это говорит о том, что ценность сотрудника для компании будет измеряться другими мерками. Изменятся знания, связи и навыки, необходимые для профессиональной деятельности.

Знания в области математики, статистики и, возможно, общее представление о программировании и сетевой науке станут столь же неотъемлемыми требованиями к современным сотрудникам, какими были математическая грамотность столетие назад и общая грамотность в более раннюю эпоху. Ценность сотрудника начнет определяться не только тесными связями с коллегами и единомышленниками, но и широким кругом отношений с людьми целого ряда других профессий, чтобы знания могли циркулировать далеко за пределами исходных областей. Когда-то, чтобы быть превосходным биологом, нужно было знать множество других специалистов в этой сфере. В этом смысле не многое изменилось. Но теперь, когда большие данные приобрели большое влияние, важна не только глубина опыта в предметной области. Сложную биологическую задачу можно успешно решить и при помощи астрофизика или дизайнера в области визуализации данных.

Видеоигры — одна из отраслей, где «лейтенанты» больших данных уже пробили себе путь локтями, чтобы встать в ряд с «генералами» экспертных знаний, попутно преобразуя саму отрасль. Рыночный сектор видеоигр ежегодно получает 10 миллиардов долларов прибыли, что превышает кассовые сборы Голливуда. Раньше компания разрабатывала игру, выпускала ее на рынок и надеялась, что та станет хитом. На основе данных о продажах компания готовила продолжение или начинала новый проект. Решения относительно темпа и элементов игры (таких как персонажи, сюжет, объекты, события и пр.) зависели от творческой фантазии дизайнеров, которые относились к своей работе с такой же серьезностью, как Микеланджело расписывал Сикстинскую капеллу. Это было искусство, а не наука, мир догадок и интуиции, как у скаутов из фильма «Человек, который изменил всё».

Но эти времена прошли. FarmVille, FrontierVille, FishVille компании Zynga и другие онлайн-игры являются интерактивными. Очевидно, это позволяет Zynga просматривать данные об использовании игр и вносить изменения, руководствуясь реальным опытом игроков. Поэтому, если игроки с трудом переходят с одного уровня на другой или склонны забрасывать игру в определенный момент из-за скуки, специалисты Zynga заметят это по данным и предпримут соответствующие меры. Менее бросается в глаза то, что компания адаптирует игры под особенности отдельных игроков. Так что существует не одна версия FarmVille — их сотни.

Аналитики больших данных в компании изучают, как на увеличение продаж виртуальных товаров влияет их цвет или выбор друзей. Например, когда данные показали, что игроки FishVille покупают полупрозрачных рыб в шесть раз чаще, чем остальных существ, компания Zynga предложила дополнительные разновидности таких рыб и хорошо на этом заработала. В игре Mafia Wars обнаружилось, что игроки охотнее всего покупают оружие с золотой каймой и белоснежных домашних тигров.[126] Вряд ли разработчики игр, находящиеся в студии, узнали бы об этом сами. Это им подсказали данные. «Мы аналитическая компания, которая работает под видом игровой. Здесь всем заправляют числа», — говорит Кен Рудин, главный аналитик Zynga.[127]

Происходит переход на решения, принимаемые на основе данных. Большинство людей приходят к решению, исходя из фактов, рассуждений и, пожалуй, во многом — догадок. «Буйство субъективных точек зрения возникает из ощущений в области солнечного сплетения», — говорится в памятных строках поэта Уистена Одена. Томас Дэвенпорт, бизнес-профессор в Бэбсон-колледже, Массачусетс, и автор многочисленных книг по аналитике, называет это явление «золотым нутром». Руководителям придает уверенность их внутреннее чутье, на которое они и полагаются. Но и здесь не обошлось без изменений: управленческие решения принимаются (или по крайней мере подтверждаются) прогнозным моделированием и анализом больших данных.

The-Numbers.com на основе баз данных и внушительного математического аппарата сообщает независимым голливудским продюсерам вероятный доход от того или иного фильма задолго до того, как отснят первый дубль. База данных компании обрабатывает около 30 миллионов записей о каждом коммерческом кинофильме США за последние десятилетия. Записи содержат сведения о бюджете, жанре, актерском составе, съемочной группе, наградах, доходах (включая американские и международные кассовые сборы, зарубежные права, продажу и аренду видеозаписей) и не только. «Компания разработала карту сети из миллиона взаимосвязей, таких как “этот сценарист работал с этим режиссером; этот режиссер работал с этим актером”», — объясняет основатель и президент компании Брюс Нэш.

The-Numbers.com умеет находить сложные корреляции, которые предсказывают доход от кинопроектов. Продюсеры предоставляют эту информацию студиям и инвесторам, чтобы получить финансовую поддержку. Повозившись с переменными, компания даже может подсказать клиентам, как увеличить их доход (или свести к минимуму финансовые риски). В одном случае анализ показал, что проект будет иметь больше шансов на успех, если в главной мужской роли снимется актер «А-списка», номинированный на премию «Оскар», с гонораром в 5 миллионов долларов. В другом случае Нэш сообщил студии IMAX, что их проект окупится, только если его бюджет урезать с 12 до 8 миллионов долларов. «Это буквально осчастливило продюсера, чего не скажешь о кинорежиссере», — поделился Нэш.

Таким образом, вырисовывается определенный переход в принятии корпоративных решений (например, стоит ли снимать тот или иной фильм или с каким бейсболистом подписать контракт). Эрик Бриньолфссон, бизнес-профессор Массачусетского технологического института, и его коллеги сравнили показатели тех компаний, которые преуспели в принятии решений на основе данных, и тех, кто не придал этому подходу особого значения. Обнаружилось, что уровень производительности в таких компаниях на 6% выше, чем у тех, кто, принимая решения, не опирается на данные.[128] Такой подход дает значительное преимущество, хотя и кратковременное, поскольку все больше компаний применяют в своей практике подходы на основе больших данных.

Оглавление книги


Генерация: 0.124. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз