Книга: Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Новые посредники данных

Новые посредники данных

Кто получает наибольшую выгоду в цепочке создания ценности больших данных? В наше время — обладатели особого типа мышления и инновационных идей. Как показала эпоха интернет-магазинов, истинного успеха добивается тот, кто имеет преимущество первопроходца. Но это преимущество недолговечно. По мере развития эпохи больших данных другие лица перестроятся на новый тип мышления, и преимущества первопроходцев, условно говоря, пойдут на спад.

Возможно, вся суть ценности — в навыках? В конце концов, золотая жила ничего не стоит, если вы не можете извлечь золото. Однако история вычислительной техники говорит об обратном. Сегодня опыт управления базами данных, наука о данных, аналитика, алгоритмы машинного обучения и пр. пользуются высоким спросом. Но с течением времени, по мере того как большие данные проникают в повседневную жизнь, инструменты становятся все лучше и удобнее, а люди набираются опыта, относительная ценность навыков начинает снижаться. Подобным образом в 1960–1980-х годах навыками компьютерного программирования обладали уже многие. Компании, которые переносят производственные процессы за границу, сумели еще больше снизить ценность базовых навыков программирования. То, что когда-то считалось образцом технической смекалки, теперь лишь двигатель развития беднейших стран. Это не значит, что опыт работы с большими данными не важен. Просто он не является основным источником ценности, поскольку его можно получить из внешних источников.

Сегодня, на ранних этапах развития больших данных, идеи и навыки ценятся выше всего. Но в конечном счете ценность будет заключаться в самих данных. И не только потому, что появится больше способов применения информации, но и потому, что держатели данных станут выше оценивать потенциал своих активов. В итоге они наверняка вцепятся в них еще крепче и назначат высокую цену за доступ для посторонних. (В продолжение метафоры с золотой жилой: наиболее ценным будет само золото.)

В истории долгосрочного роста выгоды держателей данных есть небольшой, но важный аспект, который стоит упомянуть. От случая к случаю станут появляться «посредники данных», способные собирать данные из нескольких источников, объединять их, а затем применять инновационным образом. Держатели данных не будут этому противиться, поскольку некоторую часть ценности данных можно извлечь только с их помощью.

В качестве примера можно привести Inrix — компанию из Сиэтла, которая занимается анализом дорожного движения. Она объединяет в режиме реального времени геолокационные данные о 100 миллионах автомобилей в США и Европе. Данные поступают от автомобилей BMW, Ford, Toyota и пр., из коммерческих автопарков такси и фургонов для доставки, а также с мобильных телефонов отдельных водителей (здесь следует отметить важную роль бесплатных приложений Inrix для смартфонов: пользователи получают бесплатную информацию о дорожном движении, а Inrix — их координаты). Полученную информацию Inrix объединяет с хронологическими данными о моделях дорожного движения, а также информацией о погоде и других факторах (например, местных мероприятиях), чтобы спрогнозировать плотность дорожного движения. Готовый «продукт» передается на автомобильные системы спутниковой навигации и используется государственными учреждениями и коммерческими автопарками.

Компания Inrix — типичный независимый посредник данных. Она получает информацию от многочисленных конкурирующих марок автомобилей и тем самым создает более ценный продукт, чем они могли бы создать самостоятельно. Каждый автопроизводитель, вероятно, получает сотни тысяч точек данных от автомобилей на дорогах и мог бы использовать их для прогнозирования дорожного движения, но его прогнозы были бы не очень точными или неполными. Качество улучшается по мере увеличения количества данных. Кроме того, таким компаниям может не хватать навыков, ведь в их компетенцию входит изгибание металла, а не решение задач на распределение Пуассона. Так что у них есть основания поручить эту работу третьей стороне. Кроме того, хотя прогноз дорожного движения имеет большое значение для водителей, вряд ли он как-то влияет на выбор марки автомобиля при покупке. Поэтому конкуренты не против объединения усилий в таком виде.

Конечно, и раньше своей информацией делились многие отрасли, в частности лаборатории страховых компаний и сетевые секторы (например, банковское дело, энергетика и телекоммуникации), где такой обмен имеет важнейшее значение для предупреждения неприятностей; время от времени информацию могут требовать регулирующие органы. Компании по исследованию рынка, а также компании, специализирующиеся на отдельных задачах, таких как аудит тиража газетных изданий, уже десятки лет объединяют отраслевые данные. А некоторые торговые ассоциации считают это главной своей задачей.

Отличие нынешней ситуации в том, что данные выходят на рынок. И кроме основного значения, из данных извлекаются новые формы ценности. Например, информация компании Inrix полезнее, чем может показаться на первый взгляд. Ее анализ дорожного движения используется для оценки состояния местных экономик, поскольку он может дать представление о безработице, розничных продажах и не только. В 2011 году программа восстановлении экономики США начала трещать по швам, несмотря на заявления политиков об обратном. Это быстро выявил анализ дорожного движения: в часы пик на дорогах стало свободнее, что предполагало увеличение безработицы. Inrix продала свои данные в инвестиционный фонд, который с помощью моделей дорожного движения вокруг магазинов крупнейших розничных сетей выявляет объемы их продаж. Фонд использует эти данные для торговли акциями компаний до объявления их квартальных доходов. Согласно корреляции, чем больше автомобилей в районе магазина, тем выше его продажи.

В цепочке создания ценности больших данных стали появляться посредники иного типа. Одним из первых игроков на рынке стала компания Hitwise, впоследствии выкупленная компанией Experian. Hitwise заключала с поставщиками веб-служб сделки на получение данных об их потоке «кликов» в обмен на дополнительный доход. Данные лицензировались за символическую фиксированную плату, а не как процент от приобретенной от них выгоды. Таким образом, основную часть ценности данных получала Hitwise, выступая в роли посредника. Другой пример — компания Quantcast, которая измеряет интернет-трафик на сайтах, позволяя их создателям узнавать подробнее о демографических данных посетителей, а также их предпочтениях, чтобы лучше нацеливать рекламные объявления. Компания распространяет свой интернет-инструмент бесплатно, позволяя сайтам отслеживать посещения. А взамен Quantcast может просматривать данные, и это помогает ей улучшить нацеливание.

Новые посредники заняли выгодное положение, не ставя под угрозу бизнес-модели держателей данных, с которыми сотрудничают. Одной из таких ниш является реклама, поскольку в ней сосредоточена основная часть данных и существует острая необходимость в их обработке для нацеливания рекламных объявлений. С ростом массовой датификации и по мере того, как в отраслях будет расти понимание, что они взаимодействуют с данными, независимые информационные посредники появятся и в других областях.

Посредники не обязательно являются коммерческими компаниями — среди них встречаются и некоммерческие. В 2012 году несколько крупнейших американских медицинских страховщиков создали институт Health Care Cost Institute. Их совокупный объем данных составил 5 миллиардов претензий (анонимных) от 33 миллионов физических лиц. Совместное использование записей позволило компаниям выявить тенденции, которые невозможно было бы увидеть, имея только собственные, меньшие наборы данных. Оказалось, что в 2008–2009 годах расходы США на медицинское обслуживание росли в три раза быстрее, чем инфляция, но с ярко выраженными отличиями на конкретном уровне: расходы на лечение в отделении неотложной хирургии выросли на 11%, в то время как в учреждениях сестринского ухода они, по сути, снизились.[122] Разумеется, страховщики никогда бы не передали свои ценные данные никому, кроме некоммерческого посредника. Такие организации вызывают меньше подозрений в корыстных мотивах и могут создаваться с учетом прозрачности и подотчетности.

Множество компаний, имеющих дело с большими данными, наглядно демонстрируют, как меняется ценность информации. Собирая данные о ценах и новостях от партнерских сайтов на условиях распределения доходов, Decide.com получает комиссионные с каждой покупки на сайте, а компании, поставляющие данные, — свою часть прибыли. Это говорит об отраслевом развитии способа работы с данными, ведь в свое время ITA не получала комиссионных с данных, предоставляемых компании Farecast, — только базовый лицензионный сбор. Теперь поставщики данных могут претендовать на более привлекательные условия. Что касается следующего стартапа Орена Эциони, вполне вероятно, что он сам попытается стать поставщиком данных, поскольку ценность опыта постепенно сдает позиции в пользу идей и данных.

По мере того как ценность переходит к тем, кто управляет данными, изменяются и бизнес-модели компаний. У европейского автопроизводителя, заключившего со своим поставщиком сделку по поводу интеллектуальной собственности, была собственная сильная команда, которая занималась анализом данных, но ему пришлось обратиться за помощью к внешнему поставщику технологий. Технологическая компания получила гонорар за свою работу, но основная часть прибыли досталась автопроизводителю. Ввиду открывающихся возможностей технологическая компания изменила свою бизнес-модель таким образом, чтобы делиться с клиентами частью рисков и выгод. Она экспериментировала, работая за более низкую плату в обмен на часть выгод, полученных в результате анализа. (С большой долей вероятности можно утверждать, что в будущем поставщики автомобильных запчастей захотят добавить измерительные датчики в свою продукцию или будут настаивать на внесении пункта о технических данных в договор купли-продажи, чтобы постоянно совершенствовать комплектующие.)

Что касается компаний-посредников, их жизнь усложняется необходимостью постоянно проверять ценность данных, которыми они делятся. Компания Inrix начала собирать не только геолокационную информацию. В 2012 году она провела пробный анализ места и времени поломок автоматических тормозных систем (АТС) по запросу автопроизводителя, который разработал собственную телеметрическую систему для сбора информации в режиме реального времени. Идея состояла в том, что, если АТС многократно срабатывает на одном и том же конкретном участке дороги, возможно, это связано с опасными условиями и следует рассмотреть альтернативные маршруты. Таким образом, Inrix получила возможность рекомендовать не только кратчайший, но и самый безопасный путь.

Однако в планы автопроизводителя не входило делиться данными с другими, как в случае с информацией GPS. Он настаивал на том, чтобы развертывать системы Inrix исключительно в своих автомобилях. Как видим, не разглашать информацию об этой функции оказалось выгоднее, чем объединить ее с данными других компаний, чтобы улучшить общую точность системы. И все-таки Inrix считает, что со временем все автопроизводители увидят пользу в объединении данных. И у нее есть веские основания придерживаться такой оптимистичной позиции, поскольку бизнес Inrix (как посредника) полностью держится на доступе к нескольким источникам данных.

Компании в области больших данных экспериментируют с различными корпоративными структурами. Inrix не «наткнулась» на свою бизнес-модель, как это часто случается у стартапов, а изначально рассматривала себя как посредника. Microsoft владела важнейшими технологическими патентами, но посчитала, что небольшая независимая компания (в отличие от крупной корпорации, известной своей агрессивной тактикой) будет воспринята более спокойно, сможет примирить конкурентов и получить максимальную отдачу от своей интеллектуальной собственности. Точно так же Вашингтонский госпитальный центр, который пользовался программным обеспечением Microsoft Amalga для анализа повторных госпитализаций пациентов, знал, каким образом употребить данные: первоначально система Amalga была собственным программным обеспечением отделения неотложной хирургии госпиталя и называлась Azyxxi, но в 2006 году она была продана корпорации Microsoft для дальнейшего усовершенствования.[123]

В 2010 году компания UPS была продана в качестве штатного подразделения по анализу данных (UPS Logistics Technologies) частной инвестиционной компании Thoma Bravo. Теперь, работая под знаменем Roadnet Technologies, она чувствует себя свободнее и может анализировать маршруты более чем одной компании. Roadnet собирает данные от многих клиентов для предоставления услуг отраслевого сопоставительного анализа как компании UPS, так и ее конкурентам. По словам Лена Кеннеди, исполнительного директора Roadnet, будучи отделом по логистике в UPS, компания ни за что не получила бы доступ к наборам данных конкурентов своей родительский компании. Но Roadnet добилась этого, став независимой: конкуренты UPS начали более охотно предоставлять свои данные. В конечном счете все выиграли от повышения точности, которое стало возможным благодаря объединению данных.

О том, что именно данные, а не навыки или образ мышления станут самыми ценными характеристиками, говорят многочисленные сделки в области больших данных. Наиболее показательный пример: в 2006 году корпорация Microsoft вознаградила Эциони за идею, выкупив Farecast примерно за 110 миллионов долларов. Однако через два года Google заплатила уже 700 миллионов за данные от поставщиков Farecast — ITA Software.

Оглавление книги


Генерация: 0.076. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз