Книга: Почему

Направленность времени

Направленность времени

Скажем, подруга утверждает, что новое лекарство помогло ей справиться с аллергией. Если она убедительно расскажет, как препарат помог остановить выделения из носа, что вы подумаете о последовательности таких событий, как прием таблеток и прекращение симптомов аллергии? На основании этой взаимосвязи вы, вероятно, решите, что сначала подруга приняла лекарство, а затем проблема была устранена. Действительно, временной паттерн помогает обнаружить причины, а тесная связь между ними также заставляет делать вывод о времени из каузальных зависимостей. Ряд исследований показал, что знание о причинах может влиять на наше восприятие временного интервала между двумя событиями[153] и даже их последовательности[154].

Одна из проблем заключается в том, что два события могут казаться происходящими одновременно лишь в силу детальности измерений или нашей ограниченной наблюдательности. Например, в микроматричном анализе одномоментно измеряется деятельность тысяч генов, причем уровни такой активности обычно замеряются регулярно, скажем, раз в час. При анализе данных может показаться, что два гена показывают одинаковый паттерн активности (бывают одновременно сверхэкспрессированы и неэкспрессированы), даже если один из них, с повышенным уровнем экспрессии, вызывает аналогичное состояние у другого. И все-таки, не видя последовательности событий и не имея базового знания, согласно которому один ген обязательно проявляется в действии прежде второго, все, что можно утверждать, – это что их уровни экспрессии коррелируют, а не что один регулирует действие другого.

Точно так же в медицинские карты пациентов сведения не заносятся ежедневно: скорее, они формируют серию временных точек с нерегулярными пространственными промежутками (данные регистрируются, только когда люди обращаются за врачебной помощью). Таким образом, видно, что в некую конкретную дату пациент принимает лекарство, которое проявляет побочные эффекты; однако мы знаем только, что оба эти фактора присутствуют, но не можем быть уверены, что пациент сначала принял лекарство и именно оно стало потенциальной причиной побочного эффекта. В долгосрочных когортных[155] исследованиях опрос отдельных лиц может проводиться всего раз в год. Таким образом, если окружающие условия или иные факторы оказывают влияние на более коротком временном горизонте, подобная последовательность ими не охватывается (а значит, события могут оцениваться объективно). Во многих случаях любое событие может наступить первым с высокой правдоподобностью, и их совместное наступление не обязательно предполагает определенное направление причинности.

Самый вопиющий случай – если информации о времени нет совсем: к примеру, при перекрестном исследовании, когда данные собираются в одно время. Так, чтобы определить наличие взаимосвязи между раком и конкретным вирусом, обследовалась случайно выбранная группа населения. Не зная, какой фактор был первым, нельзя разобраться, что оказывается провокатором, если между ними заметна корреляция (вирус вызывает рак или рак повышает подверженность вирусу?), и можно ли говорить о причинности вообще.

Если предположения о направлении причинности делаются на основе предыдущего убеждения о том, что было первым, а не факта, мы можем некорректно увидеть причинно-следственную связь там, где есть только корреляции. К примеру, многие исследователи пытались определить, способны ли такие явления, как ожирение и развод, распространяться в соцсетях за счет социальных связей (например, в результате распространения на других людей эмоциональных состояний и психозов). Без информации о временных паттернах нет способа определить, какое направление достовернее[156].

Ряд философов, например Ганс Рейхенбах[157], пытались дать определение причинности в терминах теории вероятности, не используя данные о временных паттернах и стараясь вместо этого вывести направление времени из направления каузальности[158]. Есть и вычислительные методы, в определенных ситуациях способные идентифицировать причинные взаимосвязи на основе временных данных[159]. Но большинство подходов строится на том, что причина предшествует следствию, и именно эта информация используется при ее наличии.

Один из редких примеров действительно одновременного наступления причины и следствия, когда применяемая для измерения временная шкала не имеет значения и мы не можем сказать, что произошло первым, дает физика. Существует так называемый парадокс Эйнштейна – Подольского – Розена (ЭПР)[160], когда две частицы связаны таким образом, что при изменении импульса или положения одной из них эти же свойства другой частицы меняются в полном соответствии с первой[161].

Парадоксальность ситуации в том, что частицы разделены в пространстве, но изменение все равно происходит моментально, для чего неизбежно должна иметь место каузальная связь в отсутствие пространственной смежности или предшествования по времени (два свойства, которые мы считаем ключевыми). Эйнштейн называл нелокальную причинность «жутким дальнодействием»[162], поскольку каузальные взаимосвязи в космосе требуют, чтобы информация путешествовала со скоростью выше скорости света, в нарушение законов классической физики[163]. Заметим, однако, что этот вопрос вызывает немало дебатов как среди физиков, так и среди философов[164].

Одна из идей решения ЭПР-парадокса – это обратная причинность (которую иногда именуют ретропричинностью). Она допускает, что причины могут влиять на события прошлого, а не только будущего. Если частица, меняя состояние, послала сигнал другой, связанной с ней частице в некий момент времени в прошлом, чтобы та также изменилась, тогда перемена состояния не требует, чтобы информация передавалась быстрее скорости света (хотя это предполагает некие квантовые «путешествия во времени»)[165]. Мы примем за данность, что время течет в одном направлении, и даже если мы не наблюдаем события как последовательные, причина наступает раньше следствия.

Оглавление книги


Генерация: 0.062. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз