Comprehensive Real-World Guidance for Every Embedded Developer and Engineer
This book brings together indispensable knowledge for building efficient, high-value, Linux-based embedded products: information that has never been assembled in one place before. Drawing on years of experience as an embedded Linux consultant and field application engineer, Christopher Hallinan offers solutions for the specific technical issues you're most likely to face, demonstrates how to build an effective embedded Linux environment, and shows how to use it as productively as possible.
Hallinan begins by touring a typical Linux-based embedded system, introducing key concepts and components, and calling attention to differences between Linux and traditional embedded environments. Writing from the embedded developer's viewpoint, he thoroughly addresses issues ranging from kernel building and initialization to bootloaders, device drivers to file systems.
Hallinan thoroughly covers the increasingly popular BusyBox utilities; presents a step-by-step walkthrough of porting Linux to custom boards; and introduces real-time configuration via CONFIG_RT--one of today's most exciting developments in embedded Linux. You'll find especially detailed coverage of using development tools to analyze and debug embedded systems--including the art of kernel debugging.
• Compare leading embedded Linux processors
• Understand the details of the Linux kernel initialization process
• Learn about the special role of bootloaders in embedded Linux systems, with specific emphasis on U-Boot
• Use embedded Linux file systems, including JFFS2--with detailed guidelines for building Flash-resident file system images
• Understand the Memory Technology Devices subsystem for flash (and other) memory devices
• Master gdb, KGDB, and hardware JTAG debugging
• Learn many tips and techniques for debugging within the Linux kernel
• Maximize your productivity in cross-development environments
• Prepare your entire development environment, including TFTP, DHCP, and NFS target servers
• Configure, build, and initialize BusyBox to support your unique requirements
15.1. Target Debugging
15.1. Target Debugging
We already explored several important debugging tools in Chapter 13, "Development Tools." strace and ltrace can be used to observe and characterize a process's behavior and often isolate problems. dmalloc can help isolate memory leaks and profile memory usage. ps and top are both useful for examining the state of processes. These relatively small tools are designed to run directly on the target hardware.
Debugging Linux application code on an embedded system has its own unique challenges. Resources on your embedded target are often limited. RAM and nonvolatile storage limitations might prevent you from running target-based development tools. You might not have an Ethernet port or other high-speed connection. Your target embedded system might not have a graphical display, keyboard, or mouse.
This is where your cross-development tools and an NFS root mount environment can yield large dividends. Many tools, especially GDB, have been architected to execute on your development host while actually debugging code on a remote target. GDB can be used to interactively debug your target code or to perform a postmortem analysis of a core file generated by an application crash. We covered the details of application core dump analysis in Chapter 13.