Книга: Учебное пособие по курсу «Нейроинформатика»

Выделение компонентов

Выделение компонентов

Первым основным компонентом нейрокомпьютера является нейронная сеть. Относительно архитектуры сети принцип двойственности предполагает только одно — все элементы сети реализуют при прямом функционировании характеристические функции из класса C1(E) (непрерывно дифференцируемые на области определения E, которой, как правило, является вся числовая ось).

Для обучения нейронной сети необходимо наличие задачника. Однако чаще всего, обучение производится не по всему задачнику, а по некоторой его части. Ту часть задачника, по которой в данный момент производится обучение, будем называть обучающей выборкой. Для многих задач обучающая выборка имеет большие размеры (от нескольких сот до нескольких десятков тысяч примеров). При обучении с использованием скоростных методов обучения (их скорость на три-четыре порядка превышает скорость обучения по классическому методу обратного распространения ошибки) приходится быстро сменять примеры. Таким образом, скорость обработки обучающей выборки может существенно влиять на скорость обучения нейрокомпьютера. К сожалению, большинство разработчиков аппаратных средств не предусматривает средств для быстрой смены примеров. Таким образом, задачник выделен в отдельный компонент нейрокомпьютера.

При работе с обучающей выборкой удобно использовать привычный для пользователя формат данных. Однако, этот формат чаще всего непригоден для использования нейросетью. Таким образом, между обучающей выборкой и нейросетью возникает дополнительный компонент нейрокомпьютера — предобработчик. Из литературных источников следует, что разработка эффективных предобработчиков для нейрокомпьютеров является новой, почти совсем не исследованной областью. Большинство разработчиков программного обеспечения для нейрокомпьютеров склонно возлагать функции предобработки входных данных на обучающую выборку или вообще перекладывают ее на пользователя. Это решение технологически неверно. Дело в том, что при постановке задачи для нейрокомпьютера трудно сразу угадать правильный способ предобработки. Для его подбора проводится серия экспериментов. В каждом из экспериментов используется одна и та же обучающая выборка и разные способы предобработки входных данных сети. Таким образом, выделен третий важный компонент нейрокомпьютера — предобработчик входных данных.

Заметим, что если привычный для человека способ представления входных данных непригоден для нейронной сети, то и формат ответов нейронной сети часто малопригоден для человека. Необходимо интерпретировать ответы нейронной сети. Интерпретация зависит от вида ответа. Так, если ответом нейронной сети является действительное число, то его, как правило, приходится масштабировать и сдвигать для попадания в нужный диапазон ответов. Если сеть используется как классификатор, то выбор интерпретаторов еще шире. Большое разнообразие интерпретаторов при невозможности решить раз и навсегда вопрос о преимуществах одного из них над другими приводит к необходимости выделения интерпретатора ответа нейронной сети в отдельный компонент нейрокомпьютера.

С интерпретатором ответа тесно связан еще один обязательный компонент нейрокомпьютера — оценка. Невнимание к этому компоненту вызвано практикой рассматривать метод обратного распространения ошибки в виде алгоритма. Доминирование такой точки зрения привело к тому, что, судя по публикациям, большинство исследователей даже не подозревает о том, что «уклонение от правильного ответа», подаваемое на вход сети при обратном функционировании, есть ни что иное, как производная функции оценки по выходному сигналу сети (если функция оценки является суммой квадратов уклонений). Возможно (и иногда очень полезно) конструировать другие оценки (см. главу «Оценка и интерпретатор ответа»). Нашей группой в ходе численных экспериментов было выяснено, что для обучения сетей-классификаторов функция оценки вида суммы квадратов, пожалуй, наиболее плоха. Использование альтернативных функций оценки позволяет в несколько раз ускорить обучение нейронной сети.

Шестым необходимым компонентом нейрокомпьютера является учитель. Этот компонент может меть множество реализаций. Обзор наиболее часто употребляемых и наиболее эффективных учителей приводится в главе «Учитель».

Принцип относительной функциональной обособленности требует выделения еще одного компонента, названного исполнителем запросов учителя или просто исполнителем. Назначение этого компонента не так очевидно, как всех предыдущих. Заметим, что для всех учителей, обучающих сети по методу обратного распространения ошибки, и при тестировании сети характерен следующий набор операций с каждым примером обучающей выборки:

1. Тестирование решения примера

 1. Взять пример у задачника.

 2. Предъявить его сети для решения.

 3. Предъявить результат интерпретатору ответа.

2. Оценивание решения примера

 1. Взять пример у задачника.

 2. Предъявить его сети для решения.

 3. Предъявить результат оценке.

3. Оценивание решения примера с вычислением градиента.

 1. Взять пример у задачника.

 2. Предъявить его сети для решения.

 3. Предъявить результат оценке с вычислением производных.

 4. Предъявить результат работы оценки сети для вычисления градиента.

4. Оценивание и тестирование решения примера.

 1. Взять пример у задачника.

 2. Предъявить его сети для решения.

 3. Предъявить результат оценке.

 4. Предъявить результат интерпретатору ответа.

Заметим, что все четыре варианта работы с сетью, задачником, интерпретатором ответа и оценкой легко объединить в один запрос, параметры которого позволяют указать последовательность действий. Таким образом, исполнитель исполняет всего один запрос — обработать пример. Однако выделение этого компонента позволяет исключить необходимость в прямых связях таких компонентов, как контрастер и учитель, с компонентами оценка и интерпретатор ответа, а их взаимодействие с компонентом сеть свести исключительно к запросам связанным с модификацией обучаемых параметров сети.

Последним компонентом, которого необходимо выделить, является контрастер нейронной сети. Этот компонент является надстройкой над учителем. Его назначение — сводить число связей сети до минимально необходимого или до «разумного» минимума (степень разумности минимума определяется пользователем). Кроме того, контрастер, как правило, позволяет свести множество величин весов связей к 2–4, реже к 8 выделенным пользователем значениям. Наиболее важным следствием применения процедуры контрастирования является получение логически прозрачных сетей — сетей, работу которых легко описать и понять на языке логики [76, 83].

Для координации работы всех компонент нейрокомпьютера вводится макрокомпонента Нейрокомпьютер. Основная задача этого компонента — организация интерфейса с пользователем и координация действий всех остальных компонентов.

Оглавление книги


Генерация: 0.061. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз