Книга: Программируя Вселенную. Квантовый компьютер и будущее науки

Квантовые вычисления и квантовая гравитация

Квантовые вычисления и квантовая гравитация

Если мы понимаем, как работают квантовые вычисления, нам будет легко понять, как действует общая теория относительности и как квантовые вычисления могут привести к созданию единой теории гравитации и элементарных частиц. Чтобы увидеть, как квантовые вычисления приводят к общей теории относительности, рассмотрим коммутационную схему квантовых вычислений.


Ткань пространства-времени в вычислительной Вселенной соткана из узлов и соединений. В каждом узле взаимодействуют два кубита; карта узлов и соединений дает пути, по которым движутся кубиты, когда они сходятся, взаимодействуют и расходятся вновь

Эта коммутационная схема показывает, что происходит с кубитами в процессе квантового вычисления. Кубиты движутся по «квантовым проводам», которые ведут их к логическим элементам, где они взаимодействуют друг с другом. Новые соединения ведут их к другим логическим элементам, где они взаимодействуют с другими кубитами. Из таких простых элементов состоят все квантовые вычисления. Схема определяет вычисление, задавая каузальную структуру (соединения) вместе с логической структурой (логические элементы). Каузальная структура и логическая структура определяют квантовое вычисление.

Чтобы создать квантовую теорию гравитации на основании квантовых вычислений, нужно показать, что квантовые вычисления включают в себя концепцию пространства и времени вместе с квантовой материей, заполняющей это пространство и время, и что из квантовых вычислений можно вывести общую теорию относительности Эйнштейна. Вывод гравитации из квантовых вычислений должен показать, как гравитация влияет на квантово-механическую материю и как поведение квантово-механической материи влияет на гравитацию. Чтобы иметь какое-то практическое значение, эта теория должна иметь предсказательную силу; иначе говоря, она должна позволять нам сделать как «прогноз назад» (что произошло в первый момент существования Вселенной), так и «прогноз вперед» (что произойдет, когда испарятся черные дыры, то есть об окончательном будущем Вселенной).

Это весьма серьезная задача, и мы, конечно, не решим одним махом все эти проблемы. Квантово-вычислительный подход ко Вселенной – это постоянная программа исследований, а не решение всех проблем физики (хотя мы надеемся решить некоторые из них).

Общая теория относительности – это теория пространства и времени и их взаимодействия с материей. Каждую возможную конфигурацию пространства и времени, взаимодействующих с материей, называют пространством-временем. Наша Вселенная – это одно конкретное пространство-время.

В парадигме вычислительной Вселенной понятия пространства и времени, равно как и их взаимодействие с материей, должны быть выведены из лежащих в основе всего квантовых вычислений. Иначе говоря, каждое квантовое вычисление соответствует возможному пространству-времени – точнее, квантовой суперпозиции нескольких пространственно-временных образований, черты которого выводятся из свойств данного вычисления. Наша первая цель – показать, что возникшее в результате пространство-время подчиняется общей теории относительности Эйнштейна. Затем мы рассмотрим предсказания, которые выдвигает наша теория в отношении вычислительной Вселенной.

Представим себе квантовое вычисление как процесс, встроенный в пространство и время. Каждый логический элемент находится в определенной пространственно-временной точке, а соединения («провода») представляют собой физические пути, по которым квантовые биты перетекают из одной точки в другую. Первое, что нужно отметить, – что есть множество способов встроить квантовые вычисления в пространство и время. Каждый квантовый логический элемент можно разместить в любой точке, где нет другого квантового логического элемента, а «провода», соединяющие логические схемы, можно протянуть по всему пространству. То, что происходит с квантовой информацией в процессе вычислений, не зависит от того, как квантовые вычисления встроены в пространство-время. На языке общей теории относительности динамическое содержание квантовых вычислений является «общековариантным», то есть квантовое вычисление «не заботится» о том, как оно встроено в пространство и время, до тех пор пока кубиты взаимодействуют друг с другом в определенной последовательности.

То, что квантовое вычисление не заботится о том, как оно встроено в пространство-время, означает, что пространство-время, полученное из этого квантового вычисления, подчиняется законам общей теории относительности. Почему? Потому что Эйнштейн вывел законы общей теории относительности, взяв условием, что эти законы не заботятся о том, как фундаментальная физическая динамика материи встроена в пространство-время. При соответствующих допущениях общая теория относительности является единственной теорией гравитации, которая общековариантна.

Точное доказательство того, что пространство-время, возникшее из квантового вычисления, подчиняется законам общей теории относительности, выражается математическим языком, но его можно просуммировать следующим образом. Коммутационная схема квантового вычисления диктует, куда может двигаться информация; она задает каузальную структуру пространства-времени. Но общая теория относительности говорит нам, что каузальная структура пространства-времени определяет почти все его черты; практически единственная особенность, которая остается незафиксированной, – это локальные масштабы длин.

Легко понять, почему для определения полной структуры пространства-времени необходимы локальные масштабы длин. Предположим, здесь, в Массачусетском технологическом институте, я измеряю расстояния с помощью линейки, на которой отмечены равные отрезки. Я измеряю длину «бесконечного коридора» Массачусетского технологического института (это очень длинный, но конечный коридор, идущий по всей длине главного здания, где находится мой кабинет). Я определяю, что длина этого коридора – двадцать пять единиц. Затем я отправляю вам электронное письмо, где пишу: «Длина бесконечного коридора – двадцать пять единиц». Это письмо не содержит информации о фактической длине бесконечного коридора, если вы не знаете длину той единицы, которую я использую.

Чтобы передать вам размер этой единицы, нам нужно установить общий стандарт длины. Так, если я скажу вам, что моя единица длины равна 1 650 763,73 длины волны оранжево-красного света, испускаемого атомом криптона-86 (что соответствует 10 м), и если у вас есть атом криптона-86, то теперь вы знаете, какова длина бесконечного коридора с точки зрения вашего местного масштаба длины. Так как время можно измерить точнее, чем длину, в настоящее время метр определяют как 1/299 792 458 расстояния, которое проходит свет за одну секунду. Если вам так больше нравится, я могу определить свою единицу длины как 10 раз по 1/299 792 458 расстояния, которое проходит свет за одну секунду (и моя единица длины по-прежнему составит 10 м). Теперь, если у вас есть свет и часы, способные измерять малые доли секунды, вы знаете, какова длина бесконечного коридора.

Вернемся к вычислительной Вселенной. Как только мы задали каузальную структуру квантовых вычислений, из всех особенностей пространства-времени остается установить только локальные масштабы длины, и они должны быть записаны на языке волновых свойств локальной квантово-механической материи. «Материя» в вычислительной Вселенной возникает из квантовых логических элементов. Мы помним, что любую форму квантово-механической материи, происходящей из локальных взаимодействий, можно смоделировать или сконструировать из квантовых логических элементов. Квантовые биты составляют своего рода quantum computronium, вычислительную форму материи, способную вести себя как любая элементарная частица. Как и частица, каждый квантовый логический элемент соответствует волне, которая колеблется вверх и вниз определенное число раз, пока квантовые биты преобразуются квантовым логическим элементом. Число колебаний волны логического элемента называют действием (action) логической элемента.

В процессе вычисления кубиты накапливают действие. Общее действие – это просто общее количество колебаний, которым подверглись все кубиты в ходе вычисления. Это известный факт механики, как классической, так и квантовой: поведение любой физической системы полностью определяется ее действием. То, что происходит во время вычисления, целиком и полностью зависит от действия квантовых логических элементов. Как я люблю говорить, действие находится там, где происходит действие.

Уравнения Эйнштейна связывают геометрию пространства-времени с поведением материи в нем. Эта геометрия говорит материи, куда ей нужно двигаться, а материя говорит геометрии, как ей нужно искривляться. Уравнения Эйнштейна связывают искривление пространства-времени в заданной точке с действием в этой точке, в нашем случае – с числом качаний волны квантового логического элемента. Теперь давайте проверим, подходят ли уравнения Эйнштейна для нашей вычислительной картины гравитации.

Чтобы полностью определить кривизну, нужно выбрать локальные масштабы длины. Как только они выбраны, структура вычислительного пространства-времени полностью определена. Легко показать, что локальные масштабы длины всегда можно выбрать так, чтобы получившееся пространство-время подчинялось уравнениям общей теории относительности Эйнштейна. Такое согласие с общей теорией относительности не случайно. (Квантовое вычисление не заботится о том, как оно встроено в пространство-время, поэтому наша теория автоматически является ковариантной. В результате, как только квантовое вычисление оказалось встроенным в пространство-время, у него, по сути, нет другого выбора, кроме как подчиняться уравнениям Эйнштейна.)

Однажды Эйнштейн бросил вызов Джону Уилеру, попросив его выразить общую теорию относительности одной простой фразой. Уилер принял вызов и сказал: «Материя говорит пространству, как ему искривляться, а пространство говорит материи, куда ей двигаться». Давайте перефразируем афоризм Уилера для вычисляющей Вселенной: «Информация говорит пространству, как ему искривляться, а пространство говорит информации, куда ей двигаться». В вычислительной Вселенной пространство заполнено «проводами» – путями, по которым текут потоки информации. Провода говорят информации, куда ей двигаться. Провода соединяются в квантовых логических элементах, где эта информация преобразуется и обрабатывается. Квантовые логические элементы, в свою очередь, говорят пространству, насколько ему нужно искривиться в этой точке. Структура пространства-времени возникает из структуры лежащего в основе вычисления.

Выводимая из вычислительной Вселенной картина квантовой гравитации предсказывает ряд черт Вселенной, которые мы видим вокруг. Она дает прямое объяснение тому, как пространство-время реагирует на присутствие квантово-механической материи. Ее можно использовать для того, чтобы вычислить, как квантовые флуктуации в ранней Вселенной запрограммировали плотность материи и местоположение будущих галактик. Она поддерживает модели формирования и испарения черных дыр. Взаимодействующие кубиты лежащего в основе всего квантового вычисления прекрасно способны воспроизводить феноменологию стандартной модели элементарных частиц. Другими словами, квантовое вычисление представляет собой то, что физики любят называть теорией всего. Если учесть, что «теории всего» очень часто оказываются «теориями почти ничего», я предпочитаю называть ее потенциальной теорией всего. И девиз этой потенциальной теории всего, перефразируя Джона Уиллера, – «Все из кубита!»

Парадигма вычислительной Вселенной для взаимодействия квантовой механики с общей теорией относительности представляет собой ясно видимый путь к квантовой гравитации. Этот путь пролегает через совсем другой ландшафт, чем три дороги Смолина, но его пункт назначения – тот же самый. Эта парадигма все еще находится в процессе разработки. Она дает вполне определенные предсказания о поведении ранней Вселенной и о таких процессах, как испарение черных дыр. Эти предсказания могут быть проверены наблюдениями, например за структурой космического микроволнового фона[38], оставшегося после Большого взрыва. Время покажет, приведет ли парадигма вычислительной Вселенной к пониманию квантовой гравитации, или она будет опровергнута наблюдениями и экспериментами.

Несмотря на неизбежную неопределенность, свойственную процессу добычи научной истины, вывод общей теории относительности как следствия квантовых вычислений уже прошел рубеж, которого до сих пор не удалось достичь ни на одной из трех других дорог. Поскольку квантовые вычисления так легко включают в себя и воспроизводят квантовую динамику, теория квантовой гравитации на основе вычислительной Вселенной объединяет общую теорию относительности и стандартную модель элементарных частиц простым и самосогласованным способом. Это достижение позволяет предполагать, что, если мы последуем по пути вычислительной Вселенной, он вполне может привести нас к пункту назначения – к пониманию Вселенной и всего, что в ней есть, с точки зрения того, как она обрабатывает информацию.

Оглавление книги


Генерация: 1.609. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз