Книга: Программируя Вселенную. Квантовый компьютер и будущее науки

Дальнейшее чтение

Дальнейшее чтение

Дискуссий о Вселенной как о компьютере довольно много. Кроме «Последнего вопроса» Азимова (1956), см., например, Pagels, The Cosmic Code (Simon & Schuster, 1982), J. D. Barrow, Theories of Everything (Clarendon Press, 1991), and F. J. Tipler, The Physics of Immortality (Doubleday, 1994).

Идею о том, что Вселенная может представлять собой классический компьютер, выдвинули в 1960-х гг. Конрад Цузе и Эд Фредкин. Книга Цузе вышла под названием Rechnender Raum (Schriften zur Datenverarbeitung, Band 1, Friedrich Vieweg & Sohn, Braunschweig, 1969), ее английский перевод – Calculating Space (MIT Technical Translation AZT-70–164-GEMIT, MIT [Proj. MAC], Cambridge, Mass. 02139, February 1970, http://www.idsia.ch/~juergen/zuse.html). Работы Фредкина можно найти здесь: http://www.digitalphilosophy.org/. Они предложили особый тип компьютера – «клеточный автомат». Клеточный автомат состоит из регулярной матрицы клеток, каждая из которых содержит один или более битов. Каждая клетка обновляется от одного такта к другому, делая это в зависимости от ее собственного состояния и состояния соседних клеток[46]. Идею о Вселенной как о клеточном автомате позже популяризировал Стивен Вольфрам в книге «Наука нового типа» (A New Kind of Science) (Wolfram Media, 2002).

Математические основания идеи об обезьянах, набирающих текст на клавиатуре компьютеров, см. R. J. Solomonoff, “A Formal Theory of Inductive Inference,” Information and Control, Vol. 7 (1964), 1–22; G. J. Chaitin, Algorithmic Information Theory (Cambridge University Press, 1987); A. N. Kolmogorov, “Three Approaches to the Quantitative Definition of Information,” Problems of Information Transmission, Vol. 1 (1965), 1–11. С дальнейшей дискуссией о концепции алгоритмической информации и ее связи с рождением сложности можно ознакомиться в работах Юргена Шмидхубера на http://www.idsia.ch/~juergen. См. также Max Tegmark, “Is ‘The Theory of Everything’ Merely the Ultimate Ensemble Theory?” Annals of Physics, Vol. 270 (1998), 1–51 (arXiv/gr-qc/9704009). Об отношениях между алгоритмической информацией и вторым законом термодинамики см., например, W. H. Zurek, Nature, Vol. 341 (1989), 119–24.

Идея о том, что проблема неразрешимости и проблема остановки связаны с проблемой свободной воли, предложена Тьюрингом в статье “Computing Machinery and Intelligence,” Mind (1950), 433–460. См. также K. R. Popper, “Indeterminism in Quantum Physics and Classical Physics,” British Journal for Philosophy of Science, Vol. 1 (1951), 179–188. Классическая статья на эту тему – J. R. Lucas, “Minds, Machines, and Godel,” Philosophy, Vol. 36 (1961), 112–127. Более современное исследование свободной воли – Elbow Room: The Varieties of Free Will Worth Wanting, by Daniel C. Dennett (MIT Press, 1984). Исследование о том, как вычислительная способность Вселенной влияет на нашу способность предсказывать ее поведение, можно найти в статье D. R. Wolpert, “Computational Capabilities of Physical Systems,” Physical Review E, Vol. 65, 016128 (2001) (arXiv/physics/0005058, physics/0005059).

Краткое изложение второго закона термодинамики и природы асимметрии времени можно найти в книге P. C. W. Davies, The Physics of Time Asymmetry (University of California Press, 1989). Имеется также сборник научных статей на эту тему – Physical Origins of Time Asymmetry, edited by J. J. Halliwell, J. Perez Mercader, and W. H. Zurek (Cambridge University Press, 1996). Многие из оригинальных работ о демоне Максвелла можно найти в книге Maxwell’s Demon 2: Entropy, Classical and Quantum Information, Computing, Harvey S. Leff, Andrew F. Rex (editors), Institute of Physics, 2003.

Многие из классических работ по квантовой механике собраны с комментариями в книге Quantum Theory and Measurement (ed. J. A. Wheeler and W. H. Zurek, Princeton University Press, 1983). Учебник по квантовой механике с акцентом на ее основных проблемах: Quantum Theory: Concepts and Methods by A. Peres (Springer, 1995). Подход к квантовой механике на основе декогерентных историй описан Робертом Гриффитсом в книге Consistent Quantum Theory (Cambridge, 2003). О том, как декогерентность и хаос втайне создают информацию, см. статью F. M. Cucchietti, D. A. R. Dalvit, J. P. Paz, W. H. Zurek, Physical Review Letters Vol. 91 (2003), p. 210403.

Введение в квантовую механику и квантовые вычисления можно найти в книге A Shortcut Through Time: The Path to the Quantum Computer by G. Johnson (Knopf, 2003). Стандартный учебник по квантовым компьютерам: Quantum Computation and Quantum Information by M. A. Nielsen and I. L. Chuang (Cambridge University Press, 2000).

Некоторые мои работы о физических ограничениях вычислений и вычислительной способности Вселенной можно найти в статьях “Universe as Quantum Computer,” Complexity Vol. 3 (1) (1997), 32–35 (arXiv/quantph/9912088); “Ultimate Physical Limits to Computation,” Nature Vol. 406 (2000), 1047–54 (arXiv/quantph/9908043); и “Computational Capacity of the Universe,” Physical Review Letters Vol. 88, 237901 (2002) (arXiv/quant-ph/0110141). Популярная работа о квантовой гравитации: Three Roads to Quantum Gravity by L. Smolin (Perseus Books, 2002). Техническая версия моей теории о том, что квантовая гравитация основана на квантовом вычислении: “The Computational Universe: Quantum Gravity from Quantum Computation,” arXiv/quant-ph/0501135.

Исследования сложности можно найти в книгах: The Quark and the Jaguar: Adventures in the Simple and Complex by Murray Gell-Mann (Freeman, 1995); Emergence: From Chaos to Order by John H. Holland (Perseus, 1999); и At Home in the Universe: The Search for Laws of Self-Organization and Complexity by Stuart Kauffman (Oxford, 1996). Анализ сложности Чарльза Беннетта и определение логической глубины можно найти в книгах “Dissipation, Information, Computational Complexity, Definition of Organization,” in Emerging Syntheses in Science, edited by D. Pines (Addison Wesley, 1987), и “Logical Depth and Physical Complexity,” in The Universal Turing Machine: A Half-Century Survey edited by R. Herken (Oxford, 1988), pp. 227–257. Дополнительное понятие термодинамической глубины описано в работе S. Lloyd and H. Pagels, “Complexity as Thermodynamic Depth,” Annals of Physics Vol. 188 (1988), 186–213.

Оглавление книги


Генерация: 1.209. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз