Книга: Программируя Вселенную. Квантовый компьютер и будущее науки

Запутанность

Запутанность

Еще одно различие между классической и квантовой версиями операции «условное не» состоит в том, что в квантовом случае информация, на первый взгляд, возникает из ничего. Вспомним аналогичный классический процесс: в начале бит частицы может находиться или в состоянии 0 или в состоянии 1; у него один бит энтропии. Здесь же кубит находится в четко определенном состоянии, и его энтропия равна нулю. Конечно, состояние, в котором находится кубит и которое мы обозначаем |0> + |1>, это состояние, в котором есть оба элемента, и |0>, и |1>. Подобно соответствующему состоянию частицы в двухщелевом эксперименте, это – любопытное квантовое состояние, где квантовый бит, в некотором смысле, в одно и то же время содержит и 0, и 1.

Когда два классических бита взаимодействовали в ходе операции «условное не», энтропия бита частицы заразила бит датчика. Два бита стали коррелировать, и энтропия бита датчика увеличилась. Когда два кубита взаимодействуют в ходе квантовой операции «условное не», они также начинают коррелировать, и энтропия кубита датчика увеличивается. Но эта энтропия возникла не из кубита частицы. В квантовом случае, до того как была применена операция «условное не», кубит частицы находился в четко определенном состоянии с нулевой энтропией. Откуда же взялась информация?

В квантовой механике, в отличие от классической, информация может возникать из ничего. Возьмем наши два кубита в их коррелированном состоянии, |00> + |11>, где волна первого кубита коррелирует с волной второго кубита. Это определенное квантовое состояние, и его энтропия равна нулю. Но каждый из кубитов, взятый отдельно, находится в абсолютно неопределенном состоянии: или |0>, или |1>. Таким образом, у каждого квантового бита теперь есть один полный бит энтропии.

Этот странный тип квантовой корреляции называют «запутанностью». Если классическая система находится в определенном состоянии, с нулевой энтропией, то все части системы также находятся в определенном состоянии, с нулевой энтропией. Если мы знаем состояние целого, то также знаем и состояние частей. Например, если два бита находятся в состоянии 01, то первый бит находится в состоянии 0, а второй бит находится в состоянии 1. А вот когда квантовая система находится в определенном состоянии, таком как коррелированное состояние наших квантовых битов, части системы не обязаны находиться в определенном состоянии. В запутанных состояниях мы можем знать состояние квантовой системы в целом, но не знать состояния отдельных ее частей!

Когда части квантовой системы становятся запутанными, их энтропии увеличиваются. Почти любое взаимодействие запутывает части квантовой системы. Вселенная является квантовой системой, и почти все ее части запутаны. Позже мы увидим, как запутанность позволяет квантовым компьютерам делать то, чего не могут делать классические компьютеры. Здесь же мы узнали, что запутанность ответственна за создание информации во Вселенной.

Оглавление книги


Генерация: 0.079. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз