Книга: Статистика и котики

Глава 13. Разновидности котиков или основы кластерного анализа

Глава 13. Разновидности котиков

или основы кластерного анализа

Из предыдущих разделов мы узнали, как определить, какие факторы делают наших котиков счастливыми. В этом нам помогли регрессионный и дискриминантный анализы. Зная значения этих факторов, мы можем предсказать, будет ли тот или иной котик счастливым или несчастным. Иными словами, мы можем рассортировать котиков по классам, т. е. классифицировать их.


Вообще, задача классификации является крайне важной практически для всех наук, изучающих котиков. Но довольно часто мы не имеем никакого понятия даже о том, на какие группы делятся котики. Ведь котики очень разные. Поэтому существуют методы, которые позволяют не только рассортировывать котиков на группы, но и выделять сами эти группы. И все вместе они называются кластерным анализом.

В первом приближении у нас могут возникнуть две ситуации. Первая — мы знаем, на сколько групп у нас должны делиться котики, но не имеем понятия, где эти группы находятся. Вторая — мы не знаем итоговое количество групп. Со второго случая мы, пожалуй, и начнем.


Рассмотрим самый простой пример. Предположим, что мы захотели поделить наших котиков по размеру. Очевидно, что чем больше два котика похожи друг на друга, тем больше шансов, что они окажутся в одной группе. Чтобы понять степень похожести, надо просто найти разность между размерами — чем она меньше, тем более похожими являются наши котики.


Итак, мы вычисляем все возможные разности между размерами котиков. Далее пара самых похожих котиков объединяется в группу (или кластер). Затем мы вновь вычисляем разности. А затем опять объединяем самых похожих. И так происходит до тех пор, пока у нас все котики не объединятся в один большой кластер.


Этот алгоритм относится к методам иерархической кластеризации. Их довольно много, но каждый из них обладает следующими свойствами.

1. Эти методы могут работать с большим количеством переменных — вы можете брать и размер, и степень пушистости, и длину коготков, и прочие котиковые признаки одновременно.

2. На основе этих признаков вы вычисляете степень похожести котиков (чаще используется термин расстояние).

3. Котики последовательно объединяются в группы. Это может происходить так, как было описано выше (так называемый «метод ближайшего соседа»), а может и по другим принципам.

4. По итогу вы получаете график, называемый дендрограммой. По ней вы можете определить, на какие группы делятся ваши котики и какие котики к какой группе принадлежат. Единственное — если котиков очень много, воспринимать такую дендрограмму довольно сложно.


Напомним, что иерархический кластерный анализ позволяет вам разбить котиков на группы, когда вы не знаете, сколько у вас их должно получиться. А если знаете, то более адекватным будет использование метода k-средних.

Идея достаточно проста. Предположим, вы подозреваете, что все котики делятся на три различающиеся размером группы. Тогда у каждой группы существует свой представитель, который обладает самым типичным для группы размером. Такой котик называется центроидом. И основная задача алгоритма k-средних — найти, каким именно размером эти центроиды обладают.

Происходит это пошагово. На первом этапе мы произвольно расставляем центроиды.


На втором этапе вычисляются расстояния от каждого котика до каждого центроида.


На третьем — определяем принадлежность котиков к тому или иному центроиду. Иными словами — смотрим, какой котик к какому центроиду ближе.


И на четвертом этапе мы вычисляем средний размер котиков при каждом центроиде. И центроид перемещается в этот средний размер.


А потом алгоритм повторяется со второго шага. Происходит это потому, что некоторые котики перебегают от одного центроида к другому, вследствие чего положение центроидов также будет меняться.

Происходит это ровно до тех пор, пока после очередного повторения положение центроидов останется неизменным.


Важно отметить следующие вещи. Во-первых, k-средних может работать сразу по нескольким переменным. Для этого, как и для иерархического кластерного анализа, вычисляется расстояние, но уже не между отдельными котиками, а между конкретным котиком и центроидом.

Во-вторых, результат k-средних сильно зависит от начального положения центроидов. Некоторые такие положения могут приводить к довольно-таки бредовым результатам. Поэтому k-средних лучше проводить несколько раз подряд. Кстати, если вы при этом каждый раз получаете разные результаты, стоит задуматься о смене количества групп.

НЕМАЛОВАЖНО ЗНАТЬ!

Метрики расстояний

Конкретные результаты кластерного анализа во многом зависят от того, какую метрику расстояния вы выбрали. А их существует несколько. Самая простая из них — эвклидово — есть просто кратчайший путь между двумя точками.


Иногда вместо него используют так называемое Манхэттенское расстояние. Названо оно было в честь Манхэттена, а точнее — в честь его планировки. Прогуливаясь по Манхэттену, вы не можете попасть из точки А в точку Б по кратчайшему пути. Если только вы не можете проходить сквозь стены, вам обязательно придется идти вдоль его параллельно-перпендикулярных улиц.


Заметим, что синий и красный пути абсолютно одинаковы. Манхэттенское расстояние лучше использовать в случаях, если вы подозреваете, что в вашей выборке есть выбросы.

Последняя наиболее часто используемая метрика — это расстояние Чебышева. Она немного похожа на Манхэттенское расстояние. Но только чуть-чуть. Потому что его можно определить как максимальное расстояние, которое котику нужно будет пройти вдоль одной улицы.


Оглавление книги

Оглавление статьи/книги

Генерация: 0.036. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз