Книга: Учебное пособие по курсу «Нейроинформатика»

Архитектуры сетей

Архитектуры сетей



Как уже отмечалось ранее, при конструировании сетей из элементов можно построить сеть любой архитектуры. Однако и при произвольном конструировании можно выделить наиболее общие признаки, существенно отличающие одну сеть от другой. Очевидно, что замена простого сумматора на адаптивный или даже на квадратичный не приведут к существенному изменению структуры сети, хотя число обучаемых параметров увеличится. Однако, введение в сеть цикла сильно изменяет как структуру сети, так и ее поведение. Таким образом можно все сети разбить на два сильно отличающихся класса: ациклические сети и сети с циклами. Среди сетей с циклами существует еще одно разделение, сильно влияющее на способ функционирования сети: равновесные сети с циклами и сети с ограниченными циклами.

Большинство используемых сетей не позволяют определить, как повлияет изменение какого-либо внутреннего параметра сети на выходной сигнал. На рис. 13 приведен пример сети, в которой увеличение параметра ? приводит к неоднозначному влиянию на сигнал x2: при отрицательных x1 произойдет уменьшение x2, а при положительных x1 — увеличение. Таким образом, выходной сигнал такой сети немонотонно зависит от параметра ?. Для получения монотонной зависимости выходных сигналов сети от параметров внутренних слоев (то есть всех слоев кроме входного) необходимо использовать специальную монотонную архитектуру нейронной сети. Принципиальная схема сетей монотонной архитектуры приведена на рис. 14.


Основная идея построения монотонных сетей состоит в разделении каждого слоя сети на два — возбуждающий и тормозящий. При этом все связи в сети устроены так, что элементы возбуждающей части слоя возбуждают элементы возбуждающей части следующего слоя и тормозят тормозящие элементы следующего слоя. Аналогично, тормозящие элементы возбуждают тормозящие элементы и тормозят возбуждающие элементы следующего слоя. Названия «тормозящий» и «возбуждающий» относятся к влиянию элементов обеих частей на выходные элементы.

Отметим, что для сетей с сигмоидными элементами требование монотонности означает, что веса всех связей должны быть неотрицательны. Для сетей с Паде элементами требование не отрицательности весов связей является необходимым условием бессбойной работы. Требование монотонности для сетей с Паде элементами приводит к изменению архитектуры сети, не накладывая никаких новых ограничений на параметры сети. На рис. 15 приведены пример немонотонной сети, а на рис. 16 монотонной сети с Паде элементами.

Особо отметим архитектуру еще одного класса сетей — сетей без весов связей. Эти сети, в противовес коннекционистским, не имеют обучаемых параметров связей. Любую сеть можно превратить в сеть без весов связей заменой всех синапсов на умножители. Легко заметить, что получится такая же сеть, только вместо весов связей будут использоваться сигналы. Таким образом в сетях без весов связей выходные сигналы одного слоя могут служить для следующего слоя как входными сигналами, так и весами связей. Заметим, что вся память таких сетей содержится в значениях параметров нелинейных преобразователей. Из разделов «Синапс» и «Умножитель» следует, что сети без весов связей способны вычислять градиент функции оценки и затрачивают на это ровно тоже время, что и аналогичная сеть с весами связей.


Оглавление книги


Генерация: 0.301. Запросов К БД/Cache: 3 / 0
поделиться
Вверх Вниз