Книга: Аппаратные интерфейсы ПК. Энциклопедия
7.1.5. Модули динамической памяти
Разделы на этой странице:
7.1.5. Модули динамической памяти
Динамическая память чаще всего применяется в виде модулей с разрядностью 1, 2, 4 или 8 байт, которые могут устанавливаться пользователем без каких-либо приспособлений. Модули стандартизованы, поэтому обеспечивается взаимная совместимость.
? SIPP и SIMM-30 — самые первые модули с однобайтной организацией, применялись вплоть до 486-х процессоров.
? SIMM-72-pin — 4-байтные модули, применявшиеся на системных платах для 486 и Pentium.
? DIMM-168 — 8-байтные модули для Pentium и выше. Существует два поколения, существенно различных по интерфейсу. Модули DIMM 168-pin Buffered (1-го поколения), как и слоты для них, встречаются редко и с широко распространенными модулями DIMM 2-го поколения несовместимы даже механически (по ключам). Наиболее популярно второе поколение с микросхемами SDRAM. Различают модификации в зависимости от наличия буферов или регистров на управляющих сигналах: Unbuffered, Buffered и Registered.
? DIMM-184 — 8-байтные модули DDR SDRAM для системных плат 6–7 поколений процессоров.
? RIMM — 2-байтные модули RDRAM для системных плат 6–7 поколений процессоров.
? SO DIMM (72 и 144-pin) и SO RIMM — малогабаритные варианты модулей (для блокнотных ПК).
? AIMM (AGP Inline Memory Module), они же GPA Card (Graphics Performance Accelerator) — 66-контактные 32- или 16-битные модули SDRAM, предназначенные для расширения памяти графических адаптеров, встроенных в системную плату.
Не пересчитывая контакты, отличить «короткие» SIMM от «длинных» и DIMM-модулей легко по их размеру: длина модуля SIMM-30 pin примерно 89 мм, SIMM-72 — 108 мм. Модули DIMM-168 и DIMM-184 имеют одинаковую длину около 134 мм (5,25"), но у 168-контактных модулей два ключа, а у 184-контактных — один (за счет чего больше контактов); кроме того, у DIMM-184 по две прорези по бокам, а не по одной. Модули RIMM имеют ту же длину, но легко отличимы по меньшему числу контактов — середина краевого разъема свободна от ламелей. У модулей RIMM микросхемы памяти закрыты пластиной радиатора. Кроме того, их левый ключ гораздо ближе к центру, чем у DIMM.
Модули памяти применяются и в принтерах (лазерных) — DIMM-168, 100-Pin DIMM, AIMM, SO DIMM-144, но иногда для них требуются и специальные модули (по конструктиву или параметрам).
Современные модули памяти имеют шину данных разрядностью 1, 4 или 8 байт. Кроме основных информационных бит, модули могут иметь дополнительные контрольные биты с различной организацией.
? Модули без контрольных бит (non Parity) имеют разрядность 8, 32 или 64 бита и допускают независимое побайтное обращение с помощью отдельных для каждого байта линий CAS#
.
? Модули с контролем паритета (Parity) имеют разрядность 9, 36 или 72 бита и также допускают независимое побайтное обращение, контрольные биты по обращению приписаны к соответствующим байтам.
? Модули с генератором паритета (Fake Parity, Parity Generator, Logical Parity) так же допускают независимое побайтное обращение, логические генераторы паритета по чтению приписаны к соответствующим байтам. Действительного контроля памяти они не обеспечивают.
? Модули с контролем по схеме ЕСС имеют разрядность 36, 40, 72 или 80 бит. Обычно они допускают побайтное обращение к информационным битам, но контрольные биты у них привязаны к одному или нескольким сигналам CAS#
, поскольку ЕСС подразумевает обращение сразу к целому слову.
? ECC-Optimized — модули, оптимизированные под режим ЕСС. От обычных модулей ЕСС они отличаются тем, что могут не обеспечивать побайтное обращение к информационным битам.
ECC-on-Simm (EOS) — модули со встроенной схемой исправления ошибок. Каждый байт модуля имеет встроенные средства контроля и исправления ошибок, работающие прозрачно. Для системы модули функционируют как обычные паритетные — в случае обнаружения неисправимой ошибки они генерируют ошибочный бит паритета. Эти модули обеспечивают отказоустойчивость по памяти (Kill Protected Memory) для системных плат, поддерживающих только контроль паритета. По «благородству» поведения (делают больше, чем «говорят») они являются прямой противоположностью модулям с генератором паритета.
Набор сигналов модуля SIMM в основном совпадает с сигналами одиночных микросхем динамической памяти. Основные характеристики распространенных модулей приведены в табл. 7.5, более подробное описание — в следующих разделах.
Таблица 7.5. Основные характеристики модулей памяти
Модуль | Разрядность?, бит | Объем, Мбайт | Тип | Питание, В | Спецификация |
---|---|---|---|---|---|
SIMM-30, SIPP | 8 (9) | 0,25-4 | FPM, EDO | 5 | 60, 70, 80 нс |
SIMM-72 | 32 (36) | 1-32 | FPM, EDO, BEDO | 5 | 50, 60, 70 нс |
DIMM-168-I | 64 (72,80) | 8-256 | FPM, EDO | 5 | 50, 60, 70 нс |
DIMM-168-II | 64 (72, 80) | 8-512 | FPM, EDO | 5, 3,3 | 50, 60, 70 нс |
DIMM-168-II | 64 (72, 80) | 8-1024 | SDRAM | 3,3 | PC66, РС100, PC133 |
DIMM-184 | 64 (72, 80) | 128, 256… | DDR SDRAM | 2,5 | PC1600, PC2100 |
AIMM | 32 | 4 | SDRAM | 3,3 | 166 МГц |
100-Pin DIMM | 32 | 4-128 | SDRAM | 3,3 | 100,125 МГц |
100-Pin DIMM | 32 | 4-32 | FPM, EDO | 3,3 | 50, 60 нс |
SO DIMM-72 | 32 (36) | 4-32 | FPM, EDO | 3,3 | 50, 60 нс |
SO DIMM-144 | 64 (72) | 32,64 | FPM, EDO | 3,3 | 50, 60 нс |
SO DIMM-144 | 64 (72) | 32-256 | SDRAM | 3,3 | 66, 100, 125, 133 МГц |
RIMM | 16 (18) | 64, 96, 128, 256 | RDRAM | 2,5 | PC600, PC700, PC800 |
? В скобках указана разрядность с учетом битов паритета или ЕСС.
Спецификация быстродействия у разных типов памяти отражает различные параметры и выбирается исходя из технических и маркетинговых соображений. Для асинхронной памяти указывают время доступа (в наносекундах). Для памяти SDRAM указывается тактовая частота, на которой она работает с достойным значением латентности (на более высокой частоте она, возможно, и будет работать, но с большим значением CL). Обозначения PC66, PC100 и PC133 здесь тоже указывают на частоту (отсутствие обозначения соответствует 66 МГц — поначалу иных спецификаций не было), а также на соответствие спецификациям Intel. Для DDR SDRAM числа в спецификации отражают пиковую пропускную способность (Мбайт/с): PC1600 (8 байт, 2?100 МГц), PC2100 (8 байт, 2?133 МГц). Для RDRAM числа в названии (600, 700 и 800) обозначают округленную частоту (2?300, 2?356 и 2?400 МГц) схода двухбайтных данных с конвейера RDRAM. Таким образом, их пиковая производительность составляет 1200, 1424 и 1600 Мбайт/с.
Маркировка модулей SDRAM, согласно спецификациям Intel, имеет вид PCX-abc-defY, где X — частота, МГц; а = CL (Cas Latency, в тактах), b = Trcd (задержка RAS-CAS), с = Trp (время предзаряда RAS), d = Тас (время доступа), e — ревизия последовательной идентификации (SPD), f — резервный символ, Y — символ архитектурных особенностей (R — признак наличия регистров; отсутствие символа означает отсутствие регистров и буферов). Временны?е характеристики задаются в десятках нс, но Тас может задаваться и в наносекундах. Номер ревизии SDP может содержать как последнюю цифру, так и обе. Так, модуль PC100-322-620 работает на частоте 100 МГц при CL = 3 и Тас = 60 нс, SPD ревизии 1.2. Но он может обозначаться и как PC 100-322-60120. Модуль PC100-322-620R имеет те же параметры, но еще снабжен и регистрами.
Существуют адаптеры, преобразующие форматы модулей SIMM (SIMMVerter, SIMMSaver). Они позволяют, например, сложить из четырех SIMM-30 один SIMM-72 или из двух односторонних SIMM-72 сложить один двусторонний. Трудно назвать такие конструктивные решения элегантными и надежными (появляется слишком много механических соединений и контактов), но их применение может быть оправданно при дефиците гнезд на плате. Или, например, при наличии четырех 4-мегабайтных модулей SIMM-30 можно сделать 16-мегабайтный SIMM-72. Следует помнить о повышенной нагрузке на шины, вносимой такими «супермодулями» с непомерным количеством микросхем и проводников.
Идентификация модулей
Для автоматической идентификации наличия и типа установленного модуля применяются различные методы, основанные на считывании конфигурационной информации с модуля (параллельная или последовательная идентификация) или «исследовании» свойств модуля во время начального тестирования по включении питания.
Метод параллельной идентификации начал применяться с модулями SIPP и SIMM-30 фирмы IBM. В интерфейс этих модулей были введены два дополнительных вывода, и по заземленным (на модуле) сигналам системная плата могла распознать наличие и объем установленной памяти. В SIMM-72 для идентификации предназначались 4 вывода (для ECC-модулей — 5), которые должны были нести информацию об объеме, быстродействии и типе применяемой памяти. Этот метод не выдержал натиска новых типов памяти, поскольку описать их важнейшие параметры четырьмя битами невозможно. В SO DIMM-72 используют 7 бит, в DIMM-168 первого поколения — 10, что тоже не решает проблем.
Новые модули памяти — DIMM-168 второго поколения, SO DIMM-144, DIMM-184 используют последовательную идентификацию (Serial Presence Detection). На модуль устанавливается микросхема специальной энергонезависимой памяти с последовательным доступом по двухпроводному интерфейсу I?С, хранящая исчерпывающую конфигурационную информацию. Формат конфигурационных данных стандартизован JEDEC, из доступных 256 байт под параметры пока определены только первые 32 и еще 32 зарезервированы, 64 байта отданы под информацию производителя (табл. 7.6). Основные параметры описываются в явном виде, например, временны?е — в наносекундах, количество бит адреса задается числами. Интерфейс I?С позволяет легко объединять его сигналы со всех модулей, что существенно проще, чем коммутация 4-10 линий параллельной идентификации. На разъем модулей DIMM-168 выведены 3 бита адреса SA[0:2], что позволяет разводкой этих выводов адресовать до восьми модулей с объединенными линиями синхронизации и данных. При необходимости расширения следующие восемь модулей потребуют от контроллера (чипсета) еще только одной двунаправленной или выходной линии. Адрес в SO DIMM-144 фиксирован, так что двухпроводный интерфейс позволяет опрашивать только один модуль, а каждый следующий модуль потребует по одной дополнительной линии.
Таблица 7.6. Назначение байт последовательной идентификации
Байт | Назначение |
---|---|
Стандартизованная информация о микросхеме | |
0 | Число записанных байт конфигурационной памяти |
1 | Разрядность адреса микросхемы Serial PD (определяет объем конфигурационной памяти: 1–2 байта, 2–4 байта, 0Dh — 8 Кбайт) |
2 | Тип памяти: 00 — резерв, 01 — Std FPM, 02 — EDO, 03 — Pipelined Nibble (BEDO), 04 —SDRAM |
3 | Количество бит адреса строк в банке 1 (биты 0–3) и банке 2 (биты 4–7) по модулю 16 (0 — не определено, 1–1 или 16,2–2 или 17 и т. д.) Если банки одинаковые, то биты 4–7 нулевые |
4 | Количество бит адреса столбцов (аналогично предыдущему) |
5 | Количество банков (рядов микросхем) |
6-7 | Разрядность данных с учетом контрольных бит (если менее 255, байт 7–0) |
8 | Уровень напряжения интерфейса: 0 — 7TL/5B, 01 —LVTTL (не допускает 5 В), 02 — HSTL 1.5, 03 — SSTL 3.3,04 — SSTL 2.5 |
9 | Для DRAM — RAS Access time (в наносекундах). Для SDRAM — минимальное время цикла (Tclk) для максимального значения CL (десятые доли не в BCD-коде) |
10 | Для DRAM — CAS Access time (в наносекундах). Для SDRAM — время доступа относительно тактового импульса (Тас) аналогично предыдущему |
11 | Схема контроля: 00 — Non-Parity, 01 — Parity, 02 — ЕСС |
12 | Частота (тип) регенерации: 00 — Normal (распределенный цикл 156 мкс), 01 — Reduced 0.25х (39 мкс), 02 — Reduced 0.5х (78 мкс), 03 — Extended 2x (313 мкс), 04 — Extended 4x (625 мкс), 05 — Extended 8x (125 мкс). Бит 7 является признаком саморегенерации (биты 6:0 кодируют те же периоды) |
13 | Разрядность микросхем основной памяти, бит. Бит 7 равен 1, если имеется второй банк с удвоенной разрядностью микросхем. Если банк один или оба банка одинаковы, бит 7 равен 0 |
14 | Разрядность микросхем контрольных разрядов, бит (аналогично) |
15-30 | Детальное описание временных и организационных параметров SDRAM |
31 | Объемы банков (рядов микросхем): бит 0–4 Мбайт, бит 1–8 Мбайт, бит 7 — 512 Мбайт, единичное значение устанавливается в одном или нескольких (двух) битах |
32-35 | Время предварительной установки и удержания входных сигналов |
36-61 | Резерв |
62 | Ревизия SPD (две BCD-цифры) |
63 | Контрольная сумма байт 0-62 по модулю 256 |
Информация изготовителя | |
64-71 | Идентификатор производителя по JEDEC |
72 | Код страны производителя |
73-90 | Код изделия (ASCII) |
91-92 | Код модификации |
93-94 | Дата изготовления (wwyy — неделя, год) |
95-98 | Серийный номер |
99-127 | Специальные данные изготовителя |
126 | Спецификация частоты (для Intel) DIMM SDRAM. Частота 66 МГц задается кодом 66h, более высокие значения — числом МГц (100 = 64h) |
127 | Детализация для SDRAM 100 МГц (для Intel) |
Байты 128–255 конфигурационной памяти свободны. Эту область в принципе можно занимать для пометки компьютера (точнее, модуля памяти) с целью привязки программного обеспечения к конкретному экземпляру PC. Однако при неосторожном использовании модулей с микросхемами без защиты от модификации случайная запись в ячейки 0-127 может привести к недоступности модуля памяти. «Оживить» его можно будет только записью корректных данных.
Модули SIMM-30, SIPP, SIMM-72
Модули SIMM (Single In-Line Memory Module) и SIPP (Single In-Line Pin Package) представляют собой небольшие печатные платы с односторонним краевым разъемом. Контактами модулей SIMM являются позолоченные (или покрытые специальным сплавом) площадки, расположенные на обеих поверхностях вдоль одной из сторон. Слово Single (одиночный) в названии подразумевает, что пары площадок на обеих сторонах эквивалентны (электрически соединяются между собой). У малораспространенных модулей SIPP контакты штырьковые (pin — иголка); эти контакты при необходимости можно припаять к площадкам модулей SIMM (такие контакты когда-то даже продавались в комплекте с модулями SIMM). Модули SIPP оказались непрактичными — их контакты не выдерживают транспортировки и многократной установки.
На модулях смонтированы микросхемы памяти в корпусах SOJ или TSOP, их адресные входы объединены. Количество и тип микросхем определяются требуемой разрядностью и объемом хранимых данных. Архитектура модулей обеспечивает возможность побайтного обращения, что существенно для записи (byte-write); выбор байт производится отдельным входом CAS#
для каждого байта. Распространенные модули имеют напряжение питания 5 В, их параметры приведены в табл. 7.7.
Таблица 7.7. Организация модулей SIMM
Емкость, Мбайт | С паритетом | Без паритета | ||
---|---|---|---|---|
30-pin | 72-pin | 30-pin | 72-pin | |
256 Кбайт | 256 К?9 | - | 256 К?8 | - |
1 | 1 М?9 | 256 К?36 | 1 М?8 | 256 К?32 |
2 | - | 512 К?36 | - | 512 К?32 |
4 | 4 М?9 | 1 М?36 | 4 М?8 | 1 М?32 |
8 | - | 2 М?36 | - | 2 М?32 |
16 | - | 4 М?36 | - | 4 М?32 |
32 | - | 8 М?36 | - | 8 М?32 |
64 | - | 16 М?36 | - | 16 М?32 |
По логической организации различают односторонние и двусторонние модули. У «односторонних» модулей микросхемы смонтированы на одной (передней) поверхности, у «двусторонних» двойной комплект — два банка — микросхем смонтирован на обеих сторонах платы. Эти названия не совсем точны, но имеют прочные позиции и иностранное происхождение (single side и double side). Часто встречаются модули, у которых на второй стороне смонтировано несколько микросхем, дополняющих набор первой стороны до требуемой разрядности (чаще там размещаются контрольные биты). Такие модули являются логически односторонними. У «истинно двусторонних» на обеих сторонах обычно симметрично расположены одинаковые комплекты микросхем.
«Короткие», или SIMM 30-pin, модули SIMM (старый тип) имеют 30 печатных выводов (рис. 7.11) и однобайтную организацию. Разводка выводов у модулей фирмы IBM (для компьютеров IBM PS/2) отличается от общепринятых стандартных. Различия делают несовместимыми модули с объемом более 1 Мбайт: модули IBM могут быть двусторонними (2 Мбайт), стандартные — только односторонними. Малораспространенные модули SIPP имеют 30 штырьковых выводов и совпадают по разводке со стандартными модулями SIMM 30-pin (SIMM-30). Применение однобайтных модулей особенно в 32-битных системных платах сильно сковывает свободу выбора объема памяти. Назначение выводов SIMM-30 и SIPP приведено в табл. 7.8.
Рис. 7.11. Модули SIMM-30
Таблица 7.8. Назначение выводов модулей SIPP и SIMM 30-pin
Контакт | STD | IBM | Контакт | STD? | IBM? |
---|---|---|---|---|---|
1 | +5 В | +5 В | 16 | DQ4 | DQ4 |
2 | CAS# | CAS# | 17 | МА8 | MAS |
3 | DQ0 | DQ0 | 18 | МА9 | MA9 |
4 | MA0 | MA0 | 19 | MA0 | RAS1# |
5 | MA1 | MA1 | 20 | DQ5 | DQ5 |
6 | DQ1 | DQ1 | 21 | WE# | WE# |
7 | MA2 | MA2 | 22 | GND | GND |
8 | MA3 | MA3 | 23 | DQ6 | DQ6 |
9 | GND | GND | 24 | N.C. | PD(GND) |
10 | DQ2 | DQ2 | 25 | DQ7 | DQ7 |
11 | MA4 | MA4 | 26 | PB-Out | PD(1M=GND) |
12 | MA5 | MA5 | 27 | RAS# | RAS0# |
13 | DQ3 | DQ3 | 28 | CAS-Parity# | N.C. |
14 | MA6 | MA6 | 29 | PB-In | PB-(In/Out) |
15 | MA7 | MA7 | 30 | +5B | +5B |
? STD — стандартный SIMM (SIPP).
? IBM — SIMM фирмы IBM.
«Длинные», или SIMM 72-pin (SIMM-72), модули SIMM имеют 72 печатных вывода (рис. 7.12, табл. 7.9) и 4-байтную организацию с возможностью независимого побайтного обращения по сигналам CASx#
. По сигналам выборки строк биты данных делятся на два слова, DQ[0:15]
выбираются сигналом RAS0#
для первого банка и RAS1#
для второго, DQ[16:31]
выбираются соответственно сигналом RAS2#
и RAS3#
. В односторонних модулях (1, 4, 16, 64 Мбайт — 1 банк) используется только одна пара сигналов выборки RAS0#
и RAS2#, в двусторонних (2, 8, 32 Мбайт — 2 банка) — две пары сигналов RAS#
. Заметим, что использование всеми модулями обеих дар линий RAS# поддерживается не всеми системными платами. Контрольные биты модулей с паритетом по выборке приписываются к соответствующим байтам, в ЕСС-модулях возможны различные варианты. Модули без паритета имеют разрядность 32 бит, с паритетом — 36 бит, модули ЕСС — 36 или 40 бит. Модули ЕСС-36 и ЕСС-40 (ECC-optimised) не допускают побайтного обращения и существенно отличаются от 32-битных и паритетных модулей.
Рис. 7.12. Модули SIMM-72
Таблица 7.9. Назначение выводов модулей SIMM 72-pin
Контакт | Назначение для модулей x32, Parity/ECC? | Контакт | Назначение для модулей x32, Parity/ECC? |
---|---|---|---|
1 | GND | 37 | PQ1/DQ19 |
2 | DQ0/DQ0 | 38 | PQ3/DQ20 |
3 | DQ16/DQ1 | 39 | GND |
4 | DQ1/DQ2 | 40 | CAS0# |
5 | DQ17/DQ3 | 41? | CAS2#/MA10 |
6 | DQ2/DQ4 | 42? | CAS3#/MA11 |
7 | DQ18/DQ5 | 43 | CAS1# |
8 | DQ3/DQ6 | 44 | RAS0# |
9 | DQ19/DQ7 | 45 | RAS1# |
10 | +5В | 46? | (OE1#)/DQ21 |
11? | (CAS-Parity#)/PD5 | 47 | WE# |
12 | MA0 | 48? | Reserved/ECC |
13 | MA1 | 49 | DQ8/DQ22 |
14 | MA2 | 50 | DQ24/DQ23 |
15 | MA3 | 51 | DQ9/DQ24 |
16 | MA4 | 52 | DQ25/DQ25 |
17 | MA5 | 53 | DQ10/DQ26 |
18 | MA6 | 54 | DQ26/DQ27 |
19? | МА10/ОЕ# | 55 | DQ11/DQ28 |
20 | DQ4/DQ8 | 56 | DQ27/DQ29 |
21 | DQ20/DQ9 | 57 | DQ12/DQ30 |
22 | DQ5/DQ10 | 58 | DQ28/DQ31 |
23 | DQ21/DQ11 | 59 | +5B |
24 | DQ6/DQ12 | 60 | DQ29/DQ32 |
25 | DQ22/DQ13 | 61 | DQ13/DQ33 |
26 | DQ7/DQ14 | 62 | DQ30/DQ34 |
27 | DQ23/DQ15 | 63 | DQ14/DQ35 |
28 | MA7 | 64? | DQ31/DQ36 |
29? | MA11(OE0#)/DQ16 | 65? | DQ15/DQ37 |
30 | +5В | 66? | (OE2#)/DQ38 |
31 | МА8 | 67 | PD1 |
32 | МА9 | 68 | PD2 |
33? | RAS3#/NC | 69 | PD3 |
34? | RAS2#/NC | 70 | PD4 |
35 | PQ2/DQ17 | 71? | (OE3#)/DQ39 |
36 | PQ0/DQ18 | 72 | GND |
? Модули ECC различных производителей могут отличаться по назначению выводов. Некоторые модули по выводам совпадают с паритетными, но могут различаться по связям контрольных бит с сигналами RASx# и CASx#.
? Могут существенно отличаться по назначению у модулей ЕСС. Сигналы DQ[36:39] имеются только в модулях ЕСС-40. В скобках приведены назначения выводов модулей фирмы IBM.
Сигналы модулей SIMM (табл. 7.10) в основном совпадают с сигналами микросхем динамической памяти. Для идентификации модулей предназначены сигналы PD[1:5]
. По заземленным (на модуле) сигналам системная плата может распознать быстродействие (тип) и объем установленной памяти. Стандарт JEDEC для SIMM-72 определяет следующее назначение выводов (0 — заземлен, 1 — свободен):
? сигналы PD[1:2]
(контакты 67, 68) — объем памяти модуля, Мбайт: 00=4, 11=8, 01=16, 10=32;
? сигналы PD[3:4]
(контакты 69, 70) — время доступа, нс: 00=100, 10=80, 01=70, 11=60;
? сигнал PD5
может являться признаком ECC-модуля (заземленный контакт).
Таблица 7.10. Сигналы модулей SIMM
Сигнал | Назначение |
---|---|
MAi | Multiplexed Address — мультиплексированные линии адреса. Во время спада сигнала RAS# на этих линиях присутствует адрес строки, во время спада CAS# — адрес столбца. Модули SIMM объемом 16 Мбайт могут быть с симметричной (square — квадратной) организацией — 11 бит адреса строк и 11 бит адреса колонок или асимметричной — 12?10 бит соответственно |
DQx | Data Bit — биты данных (объединенные входы и выходы) |
PQx | Parity Bit — бит паритета x-го байта |
PB-In, PB-Out | Parity Bit Input, Output — вход и выход микросхемы бита паритета (для SIPP PB-Out и SIMM-30). Для хранения паритета в этих модулях всегда используются микросхемы с однобитной организацией, у которых вход и выход разделен. Обычно эти контакты на модуле соединены |
WE# | Write Enable — разрешение записи. При низком уровне сигнала во время спада CAS# выполняется запись в ячейку. Переход WE# в низкий уровень и обратно при высоком уровне CAS# переводит выходной буфер EDO DRAM в высокоимпедансное состояние |
RASx# | Стробы выборки строк. Сигналы RAS0# и RAS1# используются соответственно для бит [0:15] и [16:31] первого банка, RAS1# и RAS3# — для бит [0:15] и [16:31] второго банка |
CASx# | Стробы выборки столбцов, отдельные для каждого байта: CAS0# — DQ[0:7], PQ0; CAS1# — DQ[8:15], PQ1; CAS2# — DQ[16:23], PQ2; CAS3# — DQ[24:31], PQ3. В ECC-модулях возможно обращение только ко всему модулю по сигналам CAS0# и CAS1# |
CAS-Parity# | Строб выборки столбцов для контрольных разрядов (редко используемый вариант) |
OEx# | Output Enable — разрешение открытия выходного буфера. Эти выводы на системной плате обычно соединяются с логическим нулем, а для управления буфером используются сигналы RAS#, CAS# и WE#. На некоторых модулях SIMM могут отсутствовать |
PD[1:5] | Presence Detect — индикаторы присутствия (обычно не используются) |
N.C. | No Connection — свободный вывод |
Модули DIMM-168 и DIMM-184
Модуль памяти DIMM-168 (Dual-In-line-Memory Module) имеет 168 независимых печатных выводов, расположенных с обеих сторон (контакты 1-84 — с фронтальной стороны, 85-168 — с тыльной). Разрядность шины данных — 8 байт, организация рассчитана на применение в компьютерах с четырех- и восьмибайтной шиной данных. Конструкция и интерфейс модулей соответствует стандарту JEDEC 21-C. Модули устанавливаются на плату вертикально в специальные разъемы (слоты) с ключевыми перегородками, задающими допустимое питающее напряжение и тип (поколение) применимых модулей. Модули выпускаются для напряжения питания 3,3 и 5 В. Вид модулей и сочетания ключей представлены на рис. 7.13. Толщина модулей с микросхемами в корпусах SOJ не превышает 9 мм, в корпусах TSOP — 4 мм.
Рис. 7.13. Модули DIMM: а — вид модуля DIMM-168, б — ключи для модулей первого поколения, в — ключи для модулей второго поколения, г — вид модуля DIMM-184
По внутренней архитектуре модули близки к SIMM-72, но имеют удвоенную разрядность и, соответственно, удвоенное количество линий CAS#
. Также удвоено число сигналов разрешения записи и разрешения выходных буферов, что позволяет организовывать модули в виде двух 4-байтных банков с возможностью их чередования (Bank Interleaving). Модули могут иметь разрядность 64, 72 или 80 бит, дополнительные разряды 72-битных модулей организуются либо по схеме контроля паритета (приписываясь к соответствующим байтам), либо по схеме ЕСС; 80-битные — только по схеме ЕСС.
Модули DIMM первого поколения (по IBM) были ориентированы на асинхронную память (FPM, EDO и BEDO); по архитектуре они напоминают SIMM-72. В модулях применяется параллельная идентификация — параметры быстродействия и объема передаются через 8 буферизованных выводов идентификации (Presence Detect pins). Модули первого поколения не получили широкого распространения, поскольку не принесли принципиальных новшеств в подсистему памяти.
Модули второго поколения отличаются тем, что позволяют использовать микросхемы как асинхронной (FPM и EDO), так и синхронной динамической памяти (SDRAM). Внешне они похожи на модули первого поколения, но отличаются ключом, не допускающим ошибочную установку. Унифицированное назначение выводов позволяет в одни и те же слоты устанавливать как модули DRAM; так и SDRAM. Нумерация бит данных единая для всех типов организации — контрольные биты CBx имеют отдельную нумерацию, их наличие зависит от организации (паритет, ЕСС-72, ЕСС-80).
Модули с любой организацией используют побайтное распределение информационных бит по сигналам CASx#
(табл. 7.11), распределение контрольных бит представлено в табл. 7.12. Младший бит адреса приходит по одной линии на все микросхемы модуля. Сигналы управления модулей SDRAM значительно отличаются от модулей DRAM. Исполняемая операция SDRAM определяется сигналами RAS#
, CAS#
и WE#
, синхронизируемыми по фронту соответствующих сигналов CKx
. Назначение сигналов модулей приведено в табл. 7.13, назначение выводов модулей DRAM — в табл. 7.14, SDRAM — в табл. 7.15.
Таблица 7.11. Организация информационных и управляющих сигналов для модулей DIMM-168 второго поколения
Линии CAS# (DQMB для SDRAM) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
Биты данных | 0-7 | 8-15 | 16-23 | 24-31 | 32-39 | 40-47 | 48-55 | 56-63 |
Сигналы для банка 0 DRAM | OE0#, WE0#, RAS0# | ОЕ2#, WE2#, RAS2# | ||||||
Сигналы для банка 1 DRAM | OE0#, WE0#, RAS1# | ОЕ2#, WE2#, RAS3# | ||||||
Сигналы для банка 0 SDRAM | CKE0 | CKE0 | CKE0 | CKE0 | CKE0 | CKE0 | CKE0 | CKE0 |
S0# | S0# | S2# | S2# | S0# | S0# | S2# | S2# | |
CK0 | CK1 | CK2 | CK3 | CK0 | CK1 | CK2 | CK3 | |
Сигналы для банка 1 SDRAM | CKE1 | CKE1 | CKE1 | CKE1 | CKE1 | CKE1 | CKE1 | CKE1 |
S1# | S1# | S3# | S3# | S1# | S1# | S3# | S3# | |
CK0 | CK1 | CK2 | CK3 | CK0 | CK1 | CK2 | CK3 |
Таблица 7.12. Связь контрольных бит с управляющими сигналами для модулей DIMM-168 второго поколения
Организация (разрядность микросхем DRAM) | Линии CAS# (DQMB для SDRAM) | |||||||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Контрольные биты | ||||||||
72-бит Parity | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
72-бит ЕСС, (x4 x16/x4) | - | 0-3 | - | - | - | 4-7 | - | - |
72-бит ЕСС, (x8) | - | 0-7 | - | - | - | - | - | - |
72-бит ЕСС, (x18) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
80-бит ЕСС, (x4) | - | 0-3 | 8-11 | - | - | 4-7 | 12-15 | 1 |
80-бит ЕСС, (x8, х16) | - | 0-7 | - | - | - | 8-15 | - | - |
Таблица 7.13. Сигналы модулей DIMM-168 второго поколения и DIMM-184
Сигнал | Назначение |
---|---|
Общие сигналы для FPM, EDO, BEDO и SDRAM | |
RAS[0:3]#, RAS# | Row Address Strobe — стробы выборки строк |
CAS[0:7]# CAS# | Column Address Strobe — стробы выборки столбцов |
WE0#, WE2# | Read/Write Input — сигналы разрешения записи, раздельные для банков |
OE0#, OE2# | Output Enable — сигналы разрешения выходных буферов, раздельные для банков |
A[0:13] | Address Inputs — мультиплексированная шина адреса |
DQ[0:63] | Data Input/Output — биты данных |
CB[0:15] | Check Bit Data Input/Output — контрольные биты, отсутствуют в 64-битных модулях. В 72-битных модулях отсутствуют CB[8:15] |
SCL | Serial Presence Detect Clock синхронизация интерфейса идентификации I?C |
SDA | Serial Presence Detect Data — данные интерфейса идентификации I?C |
SA[0:2] | Serial Presence Detect Address — адрес модуля в интерфейсе I?C, задается коммутацией выводов гнезд для модулей на уровни логических «0» и «1» |
WP | Write Protect — защита записи в EEPROM |
VCC | Power — питание (+5 или +3,3 В) |
VSS | Ground — общий провод |
NC | No Connect — неиспользуемый (свободный) контакт |
DU | Don't Use — запрещенный к использованию контакт |
Специфические сигналы SDRAM | |
DQMB0-DQMB7 | Data Mash Byte — маски байт (синхронизируются по фронту CK). Высокий уровень во время операции чтения переводит выходные буферы соответствующего байта в высокоимпедансное состояние с задержкой на 2 такта, операция записи блокируется без задержки |
S0#, S1#, S2#, S3# | Select — разрешение (низким уровнем) декодирования команд микросхемами SDRAM соответствующих банков. При высоком уровне новые команды игнорируются, но выполнение предыдущей не прерывается |
CK[0:3] | Clock Inputs — тактовые импульсы системной шины, положительный перепад синхронизируют все входные сигналы (кроме CKE) |
CKE0, CKE1 | Clock Enables — разрешение синхронизации (высокий уровень) для банков микросхем. Низкий уровень переводит в режим пониженного потребления или саморегенерации |
A[0:9], А[11:13] A10/АР | Address Inputs, Address Input 10/Autoprecharge — в цикле команды активации банка А[0:13] определяют адрес строки (по подъему CK). В цикле команды чтения или записи А[0:8] определяют адрес столбца, АР используется для указания (высоким уровнем) на операцию автопредзаряда (autoprecharge) банка А (BA0=0) или В (BA1=1) по окончании текущего пакетного цикла. В цикле команды предзаряда при высоком уровне АР предзаряд осуществляется в обоих банках, при низком — только в банке, определяемом линией BA0 |
BA0, BA1 | SDRAM Bank Address — выбор внутреннего банка микросхемы SDRAM (использует линии, назначенные на адреса А11, A12 модулей DRAM) |
REGE | Register Enable — разрешение синхронной работы регистров управляющих и адресных сигналов. При высоком уровне регистр защелкивает сигналы по фронту CK, а микросхемы памяти зафиксируют эти значения в следующем такте. При низком уровне регистр работает в режиме буфера (допустимо лишь для 66 МГц) |
Дополнительные сигналы модулей DOR SDRAM | |
DQS[0:17] | Двунаправленные стробы данных, формируемые источником |
CK# | Инверсный вход синхронизации (пара к CK) |
VREF | Вход опорного напряжения интерфейса SSTL_2 |
RESET# | Вход асинхронного сброса регистра |
VDDQ | Питание выходных буферов микросхем |
VDD | Питание ядра микросхем |
VDDSPD | Питание микросхемы последовательной идентификации |
VDDID | Вход VDD identification flag |
Таблица 7.14. Назначение выводов DIMM-168 DRAM второго поколения
Контакт | Цепь | Контакт | Цепь | Контакт | Цепь | Контакт | Цепь |
---|---|---|---|---|---|---|---|
1 | VSS | 85 | VSS | 43 | VSS | 127 | VSS |
2 | DQ0 | 86 | DQ32 | 44 | OE2# | 128 | DU |
3 | DQ1 | 87 | DQ33 | 45 | RAS2# | 129 | RAS3# |
4 | DQ2 | 88 | DQ34 | 46 | CAS2# | 130 | CAS6# |
5 | DQ3 | 89 | DQ35 | 47 | CAS3# | 131 | CAS7# |
6 | VCC | 90 | VCC | 48 | WE2# | 132 | DU |
7 | DQ4 | 91 | DQ36 | 49 | VCC | 133 | VCC |
8 | DQ5 | 92 | DQ37 | 50 | CB10 | 134 | CB14 |
9 | DQ6 | 93 | DQ38 | 51 | CB11 | 135 | CB15 |
10 | DQ7 | 94 | DQ39 | 52 | CB2 | 136 | CB6 |
11 | DQ8 | 95 | DQ40 | 53 | CB3 | 137 | CB7 |
12 | VSS | 96 | VSS | 54 | VSS | 138 | VSS |
13 | DQ9 | 97 | DQ41 | 55 | DQ16 | 139 | DQ48 |
14 | DQ10 | 98 | DQ42 | 56 | DQ17 | 140 | DQ49 |
15 | DQ11 | 99 | DQ43 | 57 | DQ18 | 141 | DQ50 |
16 | DQ12 | 100 | DQ44 | 58 | DQ19 | 142 | DQ51 |
17 | DQ13 | 101 | DQ45 | 59 | VCC | 143 | VCC |
18 | VCC | 102 | VCC | 60 | DQ20 | 144 | DQ52 |
19 | DQ14 | 103 | DQ46 | 61 | NC? | 145 | NC? |
20 | DQ15 | 104 | DQ47 | 62 | DU | 146 | DU |
21 | СВ0 | 105 | CB4 | 63 | NC | 147 | NC |
22 | CB1 | 106 | CB5 | 64 | VSS | 148 | VSS |
23 | VSS | 107 | VSS | 65 | DQ21 | 149 | DQ53 |
24 | CB8 | 108 | CB12 | 66 | DQ22 | 150 | DQ54 |
25 | CB9 | 109 | CB13 | 67 | DQ23 | 151 | DQ55 |
26 | VCC | 110 | VCC | 68 | VSS | 152 | VSS |
27 | WE0# | 111 | DU | 69 | DQ24 | 153 | DQ56 |
28 | CAS0# | 112 | CAS4# | 70 | DQ25 | 154 | DQ57 |
29 | CAS1# | 113 | CAS5# | 71 | DQ26 | 155 | DQ58 |
30 | RAS0# | 114 | RAS1# | 72 | DQ27 | 156 | DQ59 |
31 | OE0# | 115 | DU | 73 | VCC | 157 | VCC |
32 | VSS | 116 | VSS | 74 | DQ28 | 158 | DQ60 |
33 | А0 | 117 | A1 | 75 | DQ29 | 159 | DQ61 |
34 | A2 | 118 | A3 | 76 | DQ30 | 160 | DQ62 |
35 | A4 | 119 | A5 | 77 | DQ31 | 161 | DQ63 |
36 | A6 | 120 | A7 | 78 | VSS | 162 | VSS |
37 | A8 | 121 | A9 | 79 | NC | 163 | NC |
38 | A10 | 122 | A11 | 80 | NC | 164 | NC |
39 | A12 | 123 | A13 | 81 | NC | 165 | SA0 |
40 | VCC | 124 | VCC | 82 | SDA | 166 | SA1 |
41 | VCC | 125 | DU | 83 | SCL | 167 | SA2 |
42 | DU | 126 | DU | 84 | VCC | 168 | VCC |
Таблица 7.15. Назначение выводов DIMM-168 SDRAM
Контакт | Цепь | Контакт | Цепь | Контакт | Цепь | Контакт | Цепь |
---|---|---|---|---|---|---|---|
1 | VSS | 85 | VSS | 43 | VSS | 127 | VSS |
2 | DQ0 | 86 | DQ32 | 44 | DU? | 128 | CKE0 |
3 | DQ1 | 87 | DQ33 | 45 | S2# | 129 | S3# |
4 | DQ2 | 88 | DQ34 | 46 | DQMB2 | 130 | DQMB6 |
5 | DQ3 | 89 | DQ35 | 47 | DQMB3 | 131 | DQMB7 |
6 | VCC | 90 | VCC | 48 | DU? | 132 | A13 |
7 | DQ4 | 91 | DQ36 | 49 | VCC | 133 | VCC |
8 | DQ5 | 92 | DQ37 | 50 | CB10 | 134 | CB14 |
9 | DQ6 | 93 | DQ38 | 51 | CB11 | 135 | CB15 |
10 | DQ7 | 94 | DQ39 | 52 | CB2 | 136 | CB6 |
11 | DQ8 | 95 | DQ40 | 53 | CB3 | 137 | CB7 |
12 | VSS | 96 | VSS | 54 | VSS | 138 | VSS |
13 | DQ9 | 97 | DQ41 | 55 | DQ16 | 139 | DQ48 |
14 | DQ10 | 98 | DQ42 | 56 | DQ17 | 140 | DQ49 |
15 | DQ11 | 99 | DQ43 | 57 | DQ18 | 141 | DQ50 |
16 | DQ12 | 100 | DQ44 | 58 | DQ19 | 142 | DQ51 |
17 | DQ13 | 101 | DQ45 | 59 | VCC | 143 | VCC |
18 | VCC | 102 | VCC | 60 | DQ20 | 144 | DQ52 |
19 | DQ14 | 103 | DQ46 | 61 | NC? | 145 | NC? |
20 | DQ15 | 104 | DQ47 | 62 | Vref | 146 | Vref |
21 | СВ0 | 105 | CB4 | 63 | CKE1 | 147 | REGE |
22 | CB1 | 106 | CB5 | 64 | VSS | 148 | VSS |
23 | VSS | 107 | VSS | 65 | DQ21 | 149 | DQ53 |
24 | CB8 | 108 | CB12 | 66 | DQ22 | 150 | DQ54 |
25 | CB9 | 109 | CB13 | 67 | DQ23 | 151 | DQ55 |
26 | VCC | 110 | VCC | 68 | VSS | 152 | VSS |
27 | WE# | 111 | CAS# | 69 | DQ24 | 153 | DQ56 |
28 | DQMB0 | 112 | DQMB4 | 70 | DQ25 | 154 | DQ57 |
29 | DQMB1 | 113 | DQMB5 | 71 | DQ26 | 155 | DQ58 |
30 | S0# | 114 | S1# | 72 | DQ27 | 156 | DQ59 |
31 | DU? | 115 | RAS# | 73 | VCC | 157 | VCC |
32 | VSS | 116 | VSS | 74 | DQ28 | 158 | DQ60 |
33 | А0 | 117 | A1 | 75 | DQ29 | 159 | DQ61 |
34 | A2 | 118 | A3 | 76 | DQ30 | 160 | DQ62 |
35 | A4 | 119 | AS | 77 | DQ31 | 161 | DQ63 |
36 | A6 | 120 | A7 | 78 | VSS | 162 | VSS |
37 | AS | 121 | A9 | 79 | CK2 | 163 | CK3 |
38 | A10(AP) | 122 | BA0 | 80 | NC? | 164 | NC? |
39 | BA1 | 123 | A11 | 81 | WP | 165 | SA0 |
40 | VCC | 124 | VCC | 82 | SDA | 166 | SA1 |
41 | VCC | 125 | CK1 | 83 | SCL | 167 | SA2 |
42 | CK0 | 126 | A12 | 84 | VCC | 168 | VCC |
? NC — не подключен
? DU — не использовать!
В модулях SDRAM вместо раздельных сигналов RAS[0:3]#
для выбора банков (рядов микросхем) используются сигналы S0#
, S1#
, S2#
и S3#
; вместо CAS[0:7]#
для выбора байтов — сигналы DQMB0
-DQMB7
; сигналы WE2#
, OE0#
и ОЕ2#
не используются.
В модулях, начиная со второго поколения, применена последовательная идентификация параметров на двухпроводном интерфейсе (I?C) для чтения атрибутов (идентификации) из специальной конфигурационной памяти (обычно EEPROM 24С02), установленной на модулях.
168-pin Unbuffered DIMM — модули, у которых все цепи не буферизованы (одноименные адресные и управляющие сигналы микросхем соединены параллельно и заводятся прямо с контактов модуля). Эти модули сильнее нагружают шину памяти, но позволяют добиться максимального быстродействия. Они предназначены для системных плат с небольшим (1–4) количеством слотов DIMM или имеющих шину памяти, буферизованную на плате. Модули выполняются на микросхемах DRAM или SDRAM. Высота модулей не превышает 51 мм. Объем 8–512 Мбайт.
168-pin Registered DIMM — модули синхронной памяти (SDRAM), у которых адресные и управляющие сигналы буферизованы регистрами, синхронизируемыми тактовыми импульсами системной шины. По виду этот тип DIMM легко отличим — кроме микросхем памяти и EEPROM на них установлено несколько микросхем регистров-защелок. За счет регистров эти модули меньше нагружают шину памяти, что позволяет набирать больший объем памяти. Применение регистров повышает точность синхронизации и, следовательно, — тактовую частоту. Однако регистр вносит дополнительный такт задержки. Кроме того, на модулях может быть установлена микросхема ФАПЧ (PLL), формирующая тактовые сигналы для микросхем памяти и регистров-защелок. Это делается для разгрузки линий синхронизации, причем в отличие от обычной буферизации сигнала, вводящей задержку между входом и выходом, схема PLL обеспечивает синфазность выходных сигналов (их на выходе PLL несколько, каждый для своей группы микросхем) с опорным сигналом (линия CK0
). Модули на 64 Мбайт могут быть и без схем PLL — в них линии CK[0:3]
разводятся прямо на свои группы микросхем памяти. Регистры могут быть переведены в режим асинхронных буферов (только на 66 МГц), для чего на вход REGE
нужно подать низкий уровень. Для модулей на 66 МГц возможна замена регистров асинхронными буферами.
Модули DIMM-184 предназначены для микросхем DDR SDRAM. По габаритам они аналогичны модулям DIMM-168, но у них имеются дополнительные вырезы по бокам (см. рис. 7.13, г) и отсутствует левый ключ. Разрядность — 64 или 72 бит (ЕСС), имеются варианты с регистрами в адресных и управляющих цепях (Registered DDR SDRAM) и без них. Напряжение питания — 2,5 В. Идентификация последовательная. Состав сигналов в основном повторяет набор для DIMM SDRAM, назначение выводов приведено табл. 7.16. Модули отличаются большим количеством стробирующих сигналов DQSx
— по линии на каждые 4 бита данных (DQS8
и DQS17
используются для стробирования контрольных битов). Вход тактовой частоты только один, но дифференциальный — раздачу сигналов по микросхемам памяти и регистрам осуществляет микросхема DLL.
Таблица 7.16. Назначение выводов DIMM-184 DDR SDRAM
Контакт | Цепь | Контакт | Цепь | Контакт | Цепь | Контакт | Цепь |
---|---|---|---|---|---|---|---|
1 | VREF | 47 | DQS8 | 93 | VSS | 139 | VSS |
2 | DQ0 | 48 | АО | 94 | DQ4 | 140 | DQS17 |
3 | VSS | 49 | CB2 | 95 | DQ5 | 141 | A10 |
4 | DQ1 | 50 | VSS | 96 | VDDQ | 142 | CB6 |
5 | DQS0 | 51 | CB3 | 97 | DQS9 | 143 | VDDQ |
6 | DQ2 | 52 | BA1 | 98 | DQ6 | 144 | CB7 |
7 | VDD | 53 | DQ32 | 99 | DQ7 | 145 | VSS |
8 | DQ3 | 54 | VDDQ | 100 | VSS | 146 | DQ36 |
9 | NC | 55 | DQ33 | 101 | NC | 147 | DQ37 |
10 | RESET# | 56 | DQS4 | 102 | NC | 148 | VDD |
11 | VSS | 57 | DQ34 | 103 | A13 | 149 | DQS13 |
12 | DQ8 | 58 | VSS | 104 | VDDQ | 150 | DQ38 |
13 | DQ9 | 59 | BA0 | 105 | DQ12 | 151 | DQ39 |
14 | DQS1 | 60 | DQ35 | 106 | DQ13 | 152 | VSS |
15 | VDDQ | 61 | DQ40 | 107 | DQS10 | 153 | DQ44 |
16 | DU | 62 | VDDQ | 108 | VDD | 154 | RAS# |
17 | DU | 63 | WE# | 109 | DQ14 | 155 | DQ45 |
18 | VSS | 64 | DQ41 | 110 | DQ15 | 156 | VDDQ |
19 | DQ10 | 65 | CAS# | 111 | CKE1 | 157 | S0# |
20 | DQ11 | 66 | VSS | 112 | VDDQ | 158 | S1# |
21 | CKE0 | 67 | DQS5 | 113 | BA2 | 159 | DQS14 |
22 | VDDQ | 68 | DQ42 | 114 | DQ20 | 160 | VSS |
23 | DQ16 | 69 | DQ43 | 115 | A12 | 161 | DQ46 |
24 | DQ17 | 70 | VDD | 116 | VSS | 162 | DQ47 |
25 | DQS2 | 71 | DU | 117 | DQ21 | 163 | DU |
26 | VSS | 72 | DQ48 | 118 | A11 | 164 | VDDQ |
27 | A9 | 73 | DQ49 | 119 | DQS11 | 165 | DQ52 |
28 | DQ18 | 74 | VSS | 120 | VDD | 166 | DQ53 |
29 | A7 | 75 | DU | 121 | DQ22 | 167 | FETEN |
30 | VDDQ | 76 | DU | 122 | A8 | 168 | VDD |
31 | DQ19 | 77 | VDDQ | 123 | DQ23 | 169 | DQS15 |
32 | A5 | 78 | DQS6 | 124 | VSS | 170 | DQ54 |
33 | DQ24 | 79 | DQS0 | 125 | A6 | 171 | DQ55 |
34 | VSS | 80 | DQ51 | 126 | DQ28 | 172 | VDDQ |
35 | DQ25 | 81 | VSS | 127 | DQ29 | 173 | NC |
36 | DQS3 | 82 | VDDID | 128 | VDDQ | 174 | DQ60 |
37 | A4 | 83 | DQ56 | 129 | DQS12 | 175 | DQ61 |
38 | VDD | 84 | DQ57 | 130 | A3 | 176 | VSS |
39 | DQ26 | 85 | VDD | 131 | DQS0 | 177 | DOS16 |
40 | DQ27 | 86 | DQS7 | 132 | VSS | 178 | DQ62 |
41 | A2 | 87 | DQ58 | 133 | DQ31 | 179 | DQ63 |
42 | VSS | 88 | DQ59 | 134 | CB4 | 180 | VDDQ |
43 | A1 | 89 | VSS | 135 | CB5 | 181 | SA0 |
44 | CB0 | 90 | WP | 136 | VDDQ | 182 | SA1 |
45 | CB1 | 91 | SDA | 137 | CK0 | 183 | SA2 |
46 | VDD | 92 | SCL | 138 | CK0# | 184 | VDDSPD |
Модули RIMM
Модули RIMM (Rambus Interface Memory Module), no форме похожие на обычные модули памяти (рис. 7.14), специально предназначены для памяти RDRAM. У них 30-проводная шина проходит вдоль модуля слева направо, и на эту шину без ответвлений напаиваются микросхемы RDRAM в корпусах BGA. Сигналы интерфейса модуля (табл. 7.17) соответствуют сигналам канала Rambus, но в их названии имеется еще приставка L (Left) и R (Right) для левого и правого вывода шины соответственно. Модуль RIMM содержит до 16 микросхем RDRAM, которые всеми выводами (кроме двух) соединяются параллельно. Микросхемы памяти закрыты пластиной радиатора. В отличие от SIMM и DIMM, у которых объем памяти кратен степени числа 2, модули RIMM могут иметь более равномерный ряд объемов — в канал RDRAM память можно добавлять хоть по одной микросхеме.
Рис. 7.14. Модули RIMM
Таблица 7.17. Назначение выводов RIMM
Контакт | Цепь | Тип | Назначение |
---|---|---|---|
116, 32 | SIO0, SIO1 | I/O CMOS | Serial I/O — последовательные данные обмена с управляющими регистрами |
34, 35, 42, 51, 53, 118, 119, 126, 135, 137 | VDD | Питание +2,5 В | |
1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 37, 38, 39, 41, 45, 48, 49, 52, 54, 56, 53, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 121, 123, 125, 129, 132, 133, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168 | GND | Общий | |
2, 86, 4, 88, 6, 90, 8, 92, 10 | LDQA8…LDQA0 | I/O RSL | Шина данных A |
94 | LCFM | I RSL | Синхронизация (+) от ведущего устройства (для приема данных) |
96 | LCFMN | I RSL | Синхронизация (-) от ведущего устройства (для приема данных) |
40, 12 | VREF | Пороговый уровень сигналов RSL (1,8 В) | |
12 | LCTMN | I RSL | Синхронизация (-) к ведущему устройству (для передачи данных) |
14 | LCTM | I RSL | Синхронизация (+) к ведущему устройству (для передачи данных) |
98, 16, 100 | LROW2…LROW0 | I RSL | Шина строк (для управляющей и адресной информации) |
18, 102, 20, 104, 22 | LCOL4…LCOL0 | I RSL | Шина столбцов (для управляющей и адресной информации) |
114, 30, 112, 28, 110, 26, 108, 24, 106 | LOQB8…LOQB0 | I/O RSL | Шина данных В |
120 | LCMD | I CMOS | Последовательные команды (для обмена с управляющими регистрами). Используется и для управления энергопотреблением |
36 | LSCK | I CMOS | Синхронизация последовательных команд и данных (для обмена с управляющими регистрами) |
83, 167, 81, 165, 79, | RDQA8…RDQA0 | I/O RSL | Шина данных А |
159 | RCFM | I RSL | Синхронизация (+) от ведущего устройства (для приема данных) |
157 | RCFMN | I RSL | Синхронизация (-) от ведущего устройства (для приема данных) |
73 | RCTMN | I RSL | Синхронизация (-) к ведущему устройству (для передачи данных) |
71 | RCTM | I RSL | Синхронизация (+) к ведущему устройству (для передачи данных) |
155, 69, 153 | RROW2…RROW0 | I RSL | Шина строк (для управляющей и адресной информации) |
67, 151, 65, 148, 63 | RCOL4…RCOL0 | I RSL | Шина столбцов (для управляющей и адресной информации) |
139, 55, 141, 57, 143, 59, 145, 61, 147 | RDQB8…RDQB0 | I/O RSL | Шина данных В |
134 | RCMD | I CMOS | Последовательные команды (для обмена с управляющими регистрами). Используется и для управления энергопотреблением |
50 | RSCK | I CMOS | Синхронизация последовательных команд и данных (для обмена с управляющими регистрами) |
46 | SCL | I CMOS | Синхронизация последовательной идентификации |
47 | SDA | I/O CMOS | Данные последовательной идентификации |
131, 130 | SA1, SA0 | I CMOS | Адрес последовательной идентификации |
43, 44, 127, 128 | VT | Питание терминаторов (1,4 В) |
Модули SO DIMM-72 pin
72 pin SO DIMM (Small-Outline-Dual-Inline-Memory Module) — малогабаритный (длина 2,35" — 60 мм) модуль с двусторонним 72-контактным разъемом, нечетные контакты расположены с фронтальной стороны, четные — с тыльной (рис. 7.15, табл. 7.18 и 7.19). Модули комплектуются микросхемами DRAM в корпусах TSOP, емкость 2-32 Мбайт, разрядность данных — 32 или 36 бит (с контролем паритета). 36-битные модули отличаются только наличием дополнительных бит PQx
. Память организована в виде двух двухбайтных слов с возможностью побайтного обращения и предназначена для двух- и четырехбайтных применений. Информация об объеме, организации, адресации, быстродействии и регенерации передается через семь линий параллельной идентификации:
? PD7 — регенерация: 1=стандартная, 0=расширенная или саморегенерация;
? PD6, PD5 — время доступа: 00=50 нс, 10=70 нс, 11=60 нс;
? PD[4:1] — организация.
Рис. 7.15. Модули SO DIMM-72 pin
Таблица 7.18. Организация информационных и управляющих сигналов модулей SO DIMM-72
Линии CAS# | CAS0# | CAS1# | CAS2# | CAS3# |
---|---|---|---|---|
Биты данных и паритета | DQ[0:7], PQ8 | DQ[9:15], PQ17 | DQ[18:25], PQ26 | DQ[27:34], PQ35 |
Выбор банка 0 | RAS0# | RAS2# | ||
Выбор банка 1 | RAS1# | RAS3# |
Таблица 7.19 Назначение выводов SO DIMM-72 pin
Контакт | Цепь | Контакт | Цепь |
---|---|---|---|
1 | VSS | 2 | DQ0 |
3 | DQ1 | 4 | DQ2 |
5 | DQ3 | 6 | DQ4 |
7 | DQ5 | 8 | DQ6 |
9 | DQ7 | 10 | VCC |
11 | PD1 | 12 | A0 |
13 | A1 | 14 | A2 |
15 | A3 | 16 | A4 |
17 | A5 | 18 | A6 |
19 | А10 | 20? | PQ8 |
21 | DQ9 | 22 | DQ10 |
23 | DQ11 | 24 | DQ12 |
25 | DQ13 | 26 | DQ14 |
27 | DQ15 | 28 | A7 |
29 | А11 | 30 | VCC |
31 | А8 | 32 | A9 |
33 | RAS3# | 34 | RAS2# |
35 | DQ16 | 36? | PQ17 |
37 | DQ18 | 38 | DQ19 |
39 | VSS | 40 | CAS0# |
41 | CAS2# | 42 | CAS3# |
43 | CAS1# | 44 | RAS0# |
45 | RAS1# | 46 | A12 |
47 | WE# | 48 | A13 |
49 | DQ20 | 50 | DQ21 |
51 | DQ22 | 52 | DQ23 |
53 | DQ24 | 54 | DQ25 |
55? | PQ26 | 56 | DQ27 |
57 | DQ28 | 58 | DQ29 |
59 | DQ31 | 60 | DQ30 |
61 | VCC | 62 | DQ32 |
63 | DQ33 | 64 | DQ34 |
65? | PQ35 | 66 | PD2 |
67 | PD3 | 68 | PD4 |
69 | PD5 | 70 | PD6 |
71 | PD7 | 72 | VSS |
? У 37-битных модулей контакт свободен
Модули SO DIMM-144 pin
Модуль 144 pin SO DIMM — малогабаритный модуль (длина 2,35" — 60 мм) с двусторонним 144-контактным разъемом (рис. 7.16, табл. 7.20), емкость 8-64 Мбайт, разрядность данных — 64 или 72 бит ЕСС. Модули обеспечивают побайтное обращение по сигналам CAS[0:7]#
, сигнал RAS0#
выбирает банк 0, сигнал RAS1#
— банк 1 (при его наличии). Напряжение питания — 5 или 3,3 В, механический ключ напряжения питания расположен между контактами 59–60 и 61–62. Нечетные контакты находятся с фронтальной стороны, четные — с тыльной. Идентификация последовательная. Модули могут содержать микросхемы как DRAM, так и SDRAM, объем 8-256 Мбайт.
Рис. 7.16. Модули SO DIMM-144 pin
Таблица 7.20. Назначение выводов модулей SO DIMM-144 pin
Контакт | Цепь? | Контакт | Цепь? | Контакт | Цепь? | Контакт | Цепь? |
---|---|---|---|---|---|---|---|
1 | VSS | 2 | VSS | 71 | RAS1# | 72 | NC |
3 | DQ0 | 4 | DQ32 | 73 | OE | 74 | NC |
5 | DQ1 | 6 | DQ33 | 75 | VSS | 76 | VSS |
7 | DQ2 | 8 | DQ34 | 77 | CB2 | 78 | CB6 |
9 | DQ3 | 10 | DQ35 | 79 | CB3 | 80 | CB7 |
11 | VCC | 12 | VCC | 81 | VCC | 82 | VCC |
13 | DQ4 | 14 | DQ36 | 83 | DQ16 | 84 | DQ48 |
15 | DQ5 | 16 | DQ37 | 85 | DQ17 | 86 | DQ49 |
17 | DQ6 | 18 | DQ38 | 87 | DQ18 | 88 | DQ50 |
19 | DQ7 | 20 | DQ39 | 89 | DQ19 | 90 | DQ51 |
21 | VSS | 22 | VSS | 91 | VSS | 92 | VSS |
23 | CAS0#/DQMB0 | 24 | CAS4#/DQMB4 | 93 | DQ20 | 94 | DQ52 |
25 | CAS1#/DQMB1 | 26 | CAS5#/DQMB5 | 95 | DQ21 | 96 | DQ53 |
27 | VCC | 28 | VCC | 97 | DQ22 | 98 | DQ54 |
29 | А0 | 30 | A3 | 99 | DQ23 | 100 | DQ55 |
31 | A1 | 32 | A4 | 101 | VCC | 102 | VCC |
33 | A2 | 34 | A5 | 103 | A6 | 104 | A7 |
35 | VSS | 36 | VSS | 105 | A8 | 106 | A11 |
37 | DQ8 | 38 | DQ40 | 107 | VSS | 108 | VSS |
39 | DQ9 | 40 | DQ41 | 109 | A9 | 110 | A12 |
41 | DQ10 | 42 | DQ42 | 111 | A10 | 112 | A13 |
43 | DQ11 | 44 | DQ43 | 113 | VCC | 114 | VCC |
45 | VCC | 46 | VCC | 115 | CAS2#/DQMB1 | 116 | CAS6#/DQMB6 |
47 | DQ12 | 48 | DQ44 | 117 | CAS3#/DQMB3 | 118 | CAS7#/DQMB7 |
49 | DQ13 | 50 | DQ45 | 119 | VSS | 120 | VSS |
51 | DQ14 | 52 | DQ46 | 121 | DQ24 | 122 | DQ56 |
53 | DQ15 | 54 | DQ47 | 123 | DQ25 | 124 | DQ57 |
55 | VSS | 56 | VSS | 125 | DQ26 | 126 | DQ58 |
57 | CB0 | 58 | CB4 | 127 | DQ27 | 128 | DQ59 |
59 | CB1 | 60 | CB5 | 129 | VCC | 130 | VCC |
Ключ напряжения питания | 131 | DQ28 | 132 | DQ60 | |||
Ключ напряжения питания | 133 | DQ29 | 134 | DQ61 | |||
61 | DU/CLK0 | 62 | DU/CKE0 | 135 | DQ30 | 136 | DQ62 |
63 | VCC | 64 | VCC | 137 | DQ31 | 138 | DQ63 |
65 | DU/RAS# | 66 | DU/CAS# | 139 | VSS | 140 | VSS |
67 | WE# | 68 | NC/CKE1 | 141 | SDA | 142 | SCL |
69 | RAS0#/S0# | 70 | NC/A12 | 143 | VCC | 144 | VCC |
? DRAM/SDRAM
Модули DRAM cards-88 pin
Модули 88 pin DRAM cards — миниатюрные модули (3,37"?2,13"?0,13" — 85,5?54?3,3 мм) В пластиковом корпусе размером с карту PCMCIA (PC Card). Имеют 88-контактный разъем (не PCMCIA!), разрядность 18, 32 или 36 бит, емкость 2-36 Мбайт. Комплектуются микросхемами DRAM в корпусах TSOP. Информация о быстродействии и объеме передается по восьми выводам. Внутренняя архитектура близка к SIMM-72. Напряжение питания — 5 или 3,3 В. Применяются в малогабаритных компьютерах, легко устанавливаются и снимаются.
- Неисправности оперативной памяти
- Характеристики модулей памяти
- Модули констукторов заданий
- 3.2.1.2. Начальное выделение памяти: malloc()
- Речевые модули для «холодного» звонка с целью назначить встречу
- Как работает модуль оперативной памяти
- Описание типов модулей оперативной памяти
- Извлечение и установка модулей памяти
- ПО для диагностики оперативной памяти
- Поиск и устранение неисправностей модулей памяти
- 2.3.6. Задание объектов физической памяти
- Как узнать, какая у меня видеокарта, процессор и сколько памяти?