Книга: Distributed operating systems
1.5.4. Performance
1.5.4. Performance
Always lurking in the background is the issue of performance. Building a transparent, flexible, reliable distributed system will not win you any prizes if it is as slow as molasses. In particular, when running a particular application on a distributed system, it should not be appreciably worse than running the same application on a single processor. Unfortunately, achieving this is easier said than done.
Various performance metrics can be used. Response time is one, but so are throughput (number of jobs per hour), system utilization, and amount of network capacity consumed. Furthermore, the results of any benchmark are often highly dependent on the nature of the benchmark. A benchmark that involves a large number of independent highly CPU-bound computations may give radically different results from a benchmark that consists of scanning a single large file for some pattern.
The performance problem is compounded by the fact that communication, which is essential in a distributed system (and absent in a single-processor system) is typically quite slow. Sending a message and getting a reply over a LAN takes about 1 msec. Most of this time is due to unavoidable protocol handling on both ends, rather than the time the bits spend on the wire. Thus to optimize performance, one often has to minimize the number of messages. The difficulty with this strategy is that the best way to gain performance is to have many activities running in parallel on different processors, but doing so requires sending many messages. (Another solution is to do all the work on one machine, but that is hardly appropriate in a distributed system.)
One possible way out is to pay considerable attention to the grain size of all computations. Starting up a small computation remotely, such as adding two integers, is rarely worth it, because the communication overhead dwarfs the extra CPU cycles gained. On the other hand, starting up a long compute-bound job remotely may be worth the trouble. In general, jobs that involve a large number of small computations, especially ones that interact highly with one another, may cause trouble on a distributed system with relatively slow communication. Such jobs are said to exhibit fine-grained parallelism. On the other hand, jobs that involve large computations, low interaction rates, and little data, that is, coarse-grained parallelism, may be a better fit.
Fault tolerance also exacts its price. Good reliability is often best achieved by having several servers closely cooperating on a single request. For example, when a request comes in to a server, it could immediately send a copy of the message to one of its colleagues so that if it crashes before finishing, the colleague can take over. Naturally, when it is done, it must inform the colleague that the work has been completed, which takes another message. Thus we have at least two extra messages, which in the normal case cost time and network capacity and produce no tangible gain.
- Configuring Apache for Peak Performance
- CHAPTER 31 Performance Tuning
- Real-Time Performance Measurement Tools
- Improving performance and fault tolerance with RAID
- 4.7.3 Performance
- Performance Graph Details and esxtop
- Chapter 11 Monitoring Virtual Infrastructure Performance
- 8.2 Avoiding performance problems
- Performance Graphs
- Lesson 1: Monitoring and Optimizing System Performance
- Real-Time Performance
- Remote Performance Monitor