Книга: ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ

10.6. Пролог

10.6. Пролог

Давайте подведем итог и посмотрим, как Пролог вписывается в рассмотренную выше схему. Как было показано, некоторые формулы, представленные в виде совокупности дизъюнктов, выглядят в точности так же, как и утверждения в Прологе, в то время как другие формулы имеют несколько отличный вид. Формулы, имевшие вид утверждений Пролога, есть в действительности не что иное, как формулы, представимые в виде хорновских дизъюнктов. При записи хорновского дизъюнкта в соответствии с принятыми соглашениями, количество атомарных формул слева от знака ';-' не может превышать одну. В общем случае, дизъюнкты могут иметь несколько таких формул (они соответствуют литералам, представляющим атомарные формулы без отрицания). В Прологе непосредственно можно представить только хорновские дизъюнкты. Утверждения программы на Прологе соответствуют хорновским дизъюнктам с заголовком (в рамках определенной процедуры доказательства теорем). А что в Прологе соответствует целевому дизъюнкту? Очень просто, вопрос в Прологе

?- A1, A2,…, An

в точности соответствует хорновскому дизъюнкту без заголовка:- A1, A2,…, Ап

В предыдущем разделе уже говорилось о том, что для решения любой задачи, представленной с помощью хорновских дизъюнктов, достаточно иметь в точности один дизъюнкт без заголовка. В Прологе это соответствует ситуации, когда все утверждения «программы» имеют заголовки и в каждый момент времени рассматривается лишь одно целевое утверждение (не имеющее заголовка).

Пролог-система основывается на процедуре доказательства теорем методом резолюций для хорновских дизъюнктов. Конкретная стратегия, используемая при этом, является разновидностью линейной входной резолюции. При использовании этой стратегии, выбор дизъюнктов для резолюции на каждом шаге ограничен следующими условиями. Процедура начинается с применения правила резолюций к целевому дизъюнкту и к одной из гипотез, что дает новый дизъюнкт. Затем производится резолюция этого дизъюнкта и одной из гипотез, что дает еще один новый дизъюнкт. Затем правило резолюций применяется к последнему полученному дизъюнкту и к одной из гипотез и так далее. На каждом этапе правило резолюций применяется к последнему из вновь полученных дизъюнктов и к одной из исходных гипотез. Правило резолюций никогда не применяется, если оба дизъюнкта были выведены на предыдущих этапах или являются исходными гипотезами. С точки зрения Пролога, последний выведенный дизъюнкт можно рассматривать как конъюнкцию целевых утверждений, которые еще надо доказать (согласовать с базой данных). В начальный момент это вопрос, а в конце процесса, при благоприятных условиях,- это пустое утверждение. На каждом этапе ищется утверждение, заголовок которого сопоставим с одним из целевых утверждений. Если необходимо, происходит конкретизация переменных. Удаляется целевое утверждение, с которым произошло сопоставление, а затем к целевым утверждениям, которые необходимо согласовать, добавляется тело найденного утверждения, в котором произведена конкретизация переменных. Так, например, начав с вопроса

:- мать(джон,Х), мать(Х,Y).

и утверждения

мать(U,V):- родитель(U,V), женщина(V).

получаем

:- родитель(джон,Х), женщина(Х), мать(Х,Y).

В действительности, используемая в Прологе стратегия является более ограниченной по сравнению с общей линейной входной резолюцией. В этом примере для сопоставления был выбран первый литерал целевого дизъюнкта, но с таким же успехом можно было бы сопоставить и второй литерал. В Прологе выбор литерала для сопоставления всегда происходит одним и тем же способом – всегда выбирается первый литерал в целевом дизъюнкте. Кроме того, новые целевые утверждения, полученные при использовании некоторого утверждения помещаются в начале целевого дизъюнкта. Это значит, что Пролог завершит доказательство согласованности всех подцелей прежде чем перейдет к обработке следующих целей.

Все сказанное относится к событиям, происходящим после того, как Пролог выбрал утверждение для сопоставления с первой целью. Но как организуется исследование альтернативных утверждений для удовлетворения той же самой цели? В Прологе используется стратегия поиска вглубь, а не поиска вширь. Это значит, что Пролог в каждый момент времени рассматривает лишь одну альтернативу, упорно следуя подразумеваемому предположению о правильности сделанного выбора. Выбор утверждений для каждой цели производится в строго фиксированном порядке, а пересмотр выбранных ранее утверждений происходит лишь в случае, когда все последующие попытки не привели к решению. В качестве альтернативы можно было бы предложить стратегию, при которой система запоминает одновременно все альтернативные пути решения. При этом система переходила бы по кругу от одной альтернативы к другой, прослеживая каждую альтернативу на небольшую глубину, а затем переходя к следующей. Такая стратегия поиска вширь имеет одно преимущество – если решение существует, то оно обязательно будет найдено. Используемая в Прологе стратегия поиска вглубь может привести к «зацикливанию» и, следовательно, никогда не будут исследованы некоторые альтернативы. С другой стороны такая стратегия намного проще и требует меньших затрат памяти при реализации на вычислительных машинах с традиционной архитектурой.

И наконец, небольшое замечание о возможных различиях между процедурой сопоставления, используемой в Прологе, и процедурой унификации, используемой в методе резолюций. Большинство Пролог-систем допускают обращение с вопросами, подобными следующему:

равны(X,X).

?- равны(foo(Y),Y).

Это возможно по той причине, что в Прологе разрешается сопоставлять некоторый терм с его собственным подтермом. В этом примере foo(Y) сопоставляется с Y, который сам является частью этого терма. В результате этого Y становится равным foo(Y) что в свою очередь равно foo(foo(Y)) (учитывая значение Y), что равно foo(foo(foo(Y))) и так далее. Так что в результате Y обозначает некоторую бесконечную структуру. Заметим, что хотя Пролог-системы могут допускать использование подобных конструкций, большинство из них будут не в состоянии напечатать окончательный результат сопоставления. В соответствии с формальным определением унификации, подобного вида «бесконечные термы» никогда не должны появляться. Так что, Пролог выполняет эту процедуру неправильно в сравнении с тем, как это делается при доказательстве теорем методом резолюций. Для того чтобы сделать процедуру корректной, необходимо добавить проверку условия, заключающегося в том, что переменная не может быть конкретизирована некоторым значением, содержащим эту переменную. Такая проверка, проверка на вхождение, не представляла бы труда для ее реализации, но значительно замедляла бы выполнение программы на Прологе. Так как число программ, в которых может встретиться такая конструкция, невелико, то в большинстве реализаций такая проверка просто не делается.

Оглавление книги


Генерация: 0.045. Запросов К БД/Cache: 0 / 2
поделиться
Вверх Вниз