Книга: ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ

10.1. Краткое введение в исчисление предикатов

10.1. Краткое введение в исчисление предикатов

Если мы намерены обсуждать связь Пролога с математической логикой, то прежде всего необходимо установить, что мы понимаем под логикой. Первоначально логика развивалась как некоторый способ представления определенного класса высказываний, так чтобы можно было, используя формальную процедуру, проверить, справедливы они или нет. Таким образом, логика может быть использована для выражения высказываний, отношений между высказываниями и правил вывода одних высказываний из других. Логическое исчисление специального вида, о котором будет идти речь в этой главе, называется исчисление предикатов. Здесь мы лишь затронем некоторые вопросы исчисления предикатов. Хорошим введением в математическую логику является книга Hodges W. Logic, Penguin Books, 1977. Более подробное обсуждение предмета дано в книге Mendelson E. Intro ductiontoMathematicalLogic, VanNostrandReinhold.[15] Вы так же можете обратиться к любой книге по математической логике. Другая книга, представляющая интерес, написана Chin L. С, Lee R. С.-Т. Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973.[16]

Для того чтобы делать высказывания о мире, необходимо уметь описывать объекты этого мира. В исчислении предикатов объекты представляются с помощью термов. Существуют термы трех типов:

Константа. Это символ, обозначающий индивидуальный объект или понятие. Константы можно рассматривать как атомы языка Пролог и далее будет использоваться соответствующая форма записи. Так, грек, агата и мир являются константами.

Переменная. Это символ, используемый в разное время для обозначения разных индивидуальных объектов. Переменные вводятся лишь одновременно с кванторами, о которых будет сказано далее. Термы, являющиеся переменными, можно рассматривать как переменные языка Пролог и далее для их обозначения будет использоваться синтаксис, принятый в Прологе. Таким образом, X, Человек и Грек являются переменными.

Составной терм. Составной терм состоит из функционального символа и упорядоченного множества термов, являющихся его аргументами. Идея состоит в том, что составной терм обозначает тот или иной индивидуальный объект, зависящий от других индивидуальных объектов, представленных его аргументами. Функциональный символ описывает характер зависимости. Например, можно было бы иметь функциональный символ, обозначающий «расстояние» и имеющий два аргумента. В этом случае составной терм обозначает расстояние между объектами, представленными его аргументами. Составной терм можно рассматривать как структуру языка Пролог, имеющую в качестве функтора функциональный символ. Составные термы будут записываться по правилам синтаксиса Пролога так, что, например, жена(генри) может обозначать жену Генри, расстояние(точка1, X) может обозначать расстояние между некоторой заданной точкой и каким-то другим объектом, который будет указан, а классы(мэри, на_следующий_ день_после(Х)) может обозначать классы, в которых преподавала Мэри на следующий после X (необходимо указать день).

Таким образом, способы, используемые для представления объектов в исчислении предикатов, в точности соответствуют способам, имеющимся для этого в Прологе.

Для того чтобы делать высказывания об объектах, необходимо иметь возможность описывать отношения между объектами. Это делается с помощью предикатов. Атомарное высказывание (атомарная формула) состоит из предикатного символа и соответствующего ему упорядоченного множества термов, являющихся его аргументами. Это полностью аналогично целевому утверждению Пролога. Так, например, человек(мэри), владеет(Х,осел(Х)) и нравится (Мужчина, вино) являются атомарными высказываниями (атомарными формулами). В языке Пролог структура может быть использована как в качестве целевого утверждения, так и в качестве аргумента для другой структуры. В исчислении предикатов дело обстоит иначе. Там имеется строгое разделение между функциональными символами, используемыми в качестве функторов для построения аргументов, и предикатными символами, используемыми в качестве функторов для построения высказываний (формул).

Используя атомарные высказывания, можно различными способами создавать составные высказывания. Именно здесь начинают появляться понятия не имеющие непосредственных аналогов в языке Пролог. Существует несколько способов построения более сложных высказываний из более простых. Прежде всего, можно использовать логические связки. Таким способом можно выразить понятия 'не', 'и', 'или', 'влечет' и 'является эквивалентным'. Далее приведено краткое описание этих связок и вкладываемых в них значений. Здесь ? и ? используются для обозначения произвольных высказываний (формул). В следующей таблице приводятся традиционная форма записи высказываний, используемая в исчислении предикатов, и форма записи, используемая в этой главе.

Логическая связка Исчисление предикатов Обозначение в книге Значение
Отрицание ?? ~? «не ?»
Конъюнкция ??? ?&? «? и ?»
Дизъюнкция ??? ?#? «? или ?»
Импликация ??? ?-›? «? влечет ?»
Эквивалентность ??? ?‹-›? «? эквивалентна ?»

Так, например, конструкция

мужчина(фред) # женщина (фред)

могла бы быть использована для представления высказывания о том, что Фред является мужчиной или Фред является женщиной. Конструкция

мужчина(джон) -› человек (джон)

могла бы представлять высказывание: то, что Джон является мужчиной, влечет то, что он является человеком (если Джон мужчина, то он – человек). Понятия импликации и эквивалентности иногда при первом знакомстве с ними представляются несколько сложными. Мы говорим, что ? влечет ?, если всякий раз, когда ? истинно, то ? также истинно. Мы говорим, что ? эквивалентно ?, если ? истинно в точности в тех же случаях, что и ?. В действительности, эти понятия могут быть определены через понятия 'и', 'или', 'не'. А именно:

?-›? значит то же самое, что (~?)#?

?‹-›? значит то же самое, что и (?&?)#(~?&~?)

?‹-›? также значит то же самое, что и (?-›?)&(?-›?)

До сих пор ничего не было сказано о том, что значат переменные, входящие в состав высказывания. В действительности, использование переменных имеет смысл лишь в случае, когда они вводятся с помощью кванторов. Кванторы позволяют делать высказывания о множествах объектов и формулировать утверждения, истинные для этих множеств. В исчислении предикатов имеются два квантора. Если ? обозначает переменную, а ? – это произвольное высказывание, то коротко значение кванторов можно выразить так:

Исчисление предикатов Обозначение в книге Значение
??. ? all(?, ?) «? истинно для всех значений переменной ?»
??.? exists(?, ?) «существует такое значение переменной ?, для которого ? истинно»

Первый из кванторов называется квантором общности, так как он указывает на все объекты, существующие во вселенной («для всех ?,…»). Второй квантор называется квантором существования, так как он указывает на существование некоторого объекта (или объектов) («существует ? такой что…»). В качестве примера приведем формулу

all(X, мужчина(Х) -› человек(Х))

которая значит, что какое бы значение X мы не выбрали, если X является мужчиной, то тогда X – человек. Эту формулу можно прочитать так: для любого X, если X является мужчиной, то X является человеком. Или в более простой формулировке: каждый мужчина является человеком. Аналогично

exists(Z, отец(джон,2)& женщина(Z)))

значит, что существует объект, обозначаемый Z такой, что Джон является отцом Z и Z – женщина. Эту формулу можно прочитать так: существует Z такой, что Джон является отцом Z и Zженщина. Или в более естественной формулировке: Джон имеет дочь. Ниже приведены две более сложные формулы исчисления предикатов:

all(X, животное(Х) -› exists(Y,мать(X,Y)))

all(X, формула_исчисления_предикатов(Х) ‹-› атомарная_формула(Х) # составная_формула(Х))

Оглавление книги


Генерация: 1.181. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз