Книга: Linux программирование в примерах
3.2.5. Исследование адресного пространства
3.2.5. Исследование адресного пространства
Следующая программа, ch03-memaddr.c
, подводит итог всему, что мы узнали об адресном пространстве. Она делает множество вещей, которые не следует делать на практике, таких, как вызовы alloca()
или непосредственные вызовы brk()
и sbrk()
.
1 /*
2 * ch03-memaddr.с --- Показать адреса секций кода, данных и стека,
3 * а также BSS и динамической памяти.
4 */
5
6 #include <stdio.h>
7 #include <malloc.h> /* для определения ptrdiff_t в GLIBC */
8 #include <unistd.h>
9 #include <alloca.h> /* лишь для демонстрации */
10
11 extern void afunc(void); /* функция, показывающая рост стека */
12
13 int bss_var; /* автоматически инициализируется в 0, должна быть в BSS */
14 int data_var = 42; /* инициализируется в не 0, должна быть
15 в сегменте данных */
16 int
17 main(int argc, char **argv) /* аргументы не используются */
18 {
19 char *p, *b, *nb;
20
21 printf("Text Locations:n");
22 printf("tAddress of main: %pn", main);
23 printf("tAddress of afunc: %pn", afunc);
24
25 printf("Stack Locations.n");
26 afunc();
27
28 p = (char*)alloca(32);
29 if (p != NULL) {
30 printf("tStart of alloca()'ed array: %pn", p);
31 printf("tEnd of alloca()'ed array: %pn", p + 31);
32 }
33
34 printf("Data Locations:n");
35 printf("tAddress of data_var: %pn", &data_var);
36
37 printf("BSS Locations:n");
38 printf("tAddress of bss_var: %pn", &bss_var);
39
40 b = sbrk((ptrdiff_t)32); /* увеличить адресное пространство */
41 nb = sbrk((ptrdiff_t)0);
42 printf("Heap Locations:n");
43 printf("tInitial end of heap: %pn", b);
44 printf("tNew end of heap: %pn", nb);
45
46 b = sbrk((ptrdiff_t)-16); /* сократить его */
47 nb = sbrk((ptrdiff_t)0);
48 printf("tFinal end of heap: %pn", nb);
49 }
50
51 void
52 afunc(void)
53 {
54 static int level = 0; /* уровень рекурсии */
55 auto int stack_var; /* автоматическая переменная в стеке */
56
57 if (++level == 3) /* избежать бесконечной рекурсии */
58 return;
59
60 printf("tStack level %d: address of stack_var: %pn",
61 level, &stack_var);
62 afunc(); /* рекурсивный вызов */
63 }
Эта программа распечатывает местонахождение двух функций main()
и afunc()
(строки 22–23). Затем она показывает, как стек растет вниз, позволяя afunc()
(строки 51–63) распечатать адреса последовательных экземпляров ее локальной переменной stack_var
. (stack_var
намеренно объявлена как auto
, чтобы подчеркнуть, что она находится в стеке.) Затем она показывает расположение памяти, выделенной с помощью alloca()
(строки 28–32). В заключение она печатает местоположение переменных данных и BSS (строки 34–38), а затем памяти, выделенной непосредственно через sbrk()
(строки 40–48). Вот результаты запуска программы на системе Intel GNU/Linux:
$ ch03-memaddr
Text Locations:
Address of main: 0x804838c
Address of afunc: 0x80484a8
Stack Locations:
Stack level 1: address of stack_var: 0xbffff864
Stack level 2: address of stack_var: 0xbffff844
/* Стек растет вниз */
Start of alloca()'ed array: 0xbffff860
End of alloca()'ed array: 0xbffff87f
/* Адреса находятся в стеке */
Data Locations:
Address of data_var: 0x80496b8
BSS Locations:
Address of bss_var: 0x80497c4
/* BSS выше инициализированных данных */
Heap Locations:
Initial end of heap: 0x80497c8
/* Куча непосредственно над BSS */
New end of heap: 0x80497e8
/* И растет вверх */
Final end of heap: 0x80497d8
/* Адресные пространства можно сокращать */
- Структуры пользовательского адресного пространства на платформе x86
- Пространства имён
- 2.1. Принципы организации выставочного пространства
- Исследование средств массовой коммуникации: источники информации
- 3.2.1.1. Исследование подробностей на языке С
- Углубленное исследование
- Ситуация 1. Нехватка дискового пространства
- Вытеснение пространства пользователя
- Вытеснение пространства ядра
- Доступ к системным вызовам из пространства пользователя
- Исследование и тестирование системы
- Структура mm_struct и потоки пространства ядра