Книга: Аналитическая культура

Качество данных как совместная ответственность

Качество данных как совместная ответственность

Причины, обусловливающие снижение качества данных, могут быть самыми разными. Помимо уже перечисленных ранее, могут возникнуть проблемы с определением окончания строк, проблемы с кодировкой, когда данные в кодировке Юникод сохраняются в ASCII (это происходит сплошь и рядом), могут быть поврежденные данные, усеченные файлы, несовпадения в именах и адресах (см. табл. 2.1). Вопросами качества данных должны заниматься не только специалисты по сбору и обработке данных — эту ответственность должны разделять все сотрудники компании.

Таблица 2.1. Краткий обзор некоторых типов проблем с качеством данных и потенциальные варианты их решения. Более подробный список можно найти у Singh and Singh. A descriptive classification of causes of data quality problems in data warehousing, IJCSI Intl. J. Comp. Sci 7, no. 3 (2010): 41–50


Разработчик внешнего интерфейса может добавить в форму на сайте функцию контроля правильности ввода почтового индекса. Специалист по обработке данных может добавить контрольную цифру при передаче данных в другое хранилище. Администратор базы данных может проверить и предотвратить дублирование информации или отследить ошибки при загрузке данных. Однако сложно ожидать, что им известно, какие показатели систолического артериального давления находятся в пределах нормы, а какие нет. Когда компания получает данные на основе заполненных форм, руководители подразделений, эксперты в предметных областях и аналитики должны быть в тесном контакте с разработчиками внешнего интерфейса, чтобы допустимые границы ввода данных были заданы правильно. Кроме того, они должны принимать участие в процессе формулирования требований и управления проектом, чтобы обеспечить контроль качества данных там, где это возможно. Как уже отмечалось ранее, специалисты по аналитике должны активно участвовать в процессе сбора данных.

Далее руководители направлений и эксперты в предметных областях должны проверить качество данных. Аналитики должны провести разведочный анализ или воспользоваться собственными методами определения, находятся ли значения в допустимых границах, соблюдаются ли ожидаемые закономерности (например, соотношение систолического и диастолического давления), оценить объем пропущенных данных и так далее. На фермерском рынке шеф-повар ресторана сам выбирает продукты, пробует авокадо, нюхает базилик. Образно говоря, это его сырые ингредиенты. У аналитиков должно быть такое же отношение к данным. Это их сырые ингредиенты, которые они должны тщательно отобрать.

Руководители направлений, как правило, принимают решения о покупке баз данных у третьих сторон, о разработке инструментов по сегментированию аудитории в ходе опроса клиентов или о проведении A/B-тестирования онлайн. Они тоже должны задумываться об объективности данных, на которые опираются. Они должны проводить сами или делегировать проведение разведочного анализа данных, составлять диаграммы распределения и обнаруживать «пятидюймовых» людей.

Оглавление книги


Генерация: 1.159. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз