Книга: Давайте создадим компилятор!
Деление
Деление
Случай с делением совсем не так симметричен. У меня также есть для вас некоторые плохие новости:
Все современные 16-разрядные процессоры поддерживают целочисленное деление. Спецификации изготовителей описывают эту операцию как 32 x 16 бит деление, означающее, что вы можете разделить 32-разрядное делимое на 16-разрядный делитель. Вот плохая новость:
Они вам лгут!!!
Если вы не верите в это, попробуйте разделить любое большое 32-разрядное число (это означает, что оно имеет ненулевые биты в старших 16 разрядах) на целое число 1. Вы гарантированно получите исключение переполнения.
Проблема состоит в том, что эта команда в действительности требует, чтобы получаемое частное вписывалось в 16-разрядный результат. Этого не случится, если делитель достаточно большой. Когда любое число делится на единицу, частное будет конечно тем же самым, что и делимое.
С начала времен (ну во всяком случае компьютерных) архитекторы ЦПУ предусматривали этот маленький подводный камень в схеме деления. Это обеспечивает некоторую симметрию, так как это своего рода инверсия способа каким работает умножение. Но так как единица – это совершенно допустимое (и довольно частое) число для использования в качестве делителя, делению, реализованному аппаратно, требуется некоторая помощь от программистов.
Подразумевает следующее:
Тип частного всегда должен быть того же самого типа, что и делимое. Он независим от делителя.
Несмотря на то, что ЦПУ поддерживает деление длинного слова, аппаратно предоставленной инструкции можно доверить только делимые байт и слово. Для делимых типа длинное слово нам необходима другая библиотечная подпрограмма, которая может возвращать длинный результат.
Это похоже на работу для другой таблицы, для суммирования требуемых действий:
T1
T2 B W L
B Преобразовать D0 в W
Преобразовать D7 в L
DIVS
Result = B Преобразовать D0 в W
Преобразовать D7 в L
DIVS
Result = W Преобразовать D0 в L
JSR DIV32
Result = L
W Преобразовать D7 в L
DIVS
Result = B Преобразовать D7 в L
DIVS
Result = W Преобразовать D0 в L
JSR DIV32
Result = L
L Преобразовать D7 в L
JSR DIV32
Result = B Преобразовать D7 в L
JSR DIV32
Result = W JSR DIV32
Result = L
(Вы можете задаться вопросом, почему необходимо выполнять 32-разрядное деление, когда делимое, скажем, всего лишь байт. Так как число битов в результате может быть только столько, сколько и в делимом, зачем беспокоиться? Причина в том, что если делитель – длинное слово и в нем есть какие-либо установленные старшие разряды, результат деления должен быть равен нулю. Мы не смогли бы получить его, если мы используем только младшее слово делителя)
Следующий код предоставляет корректную функцию для PopDiv:
{–}
{ Generate Code to Divide Stack by the Primary }
function PopDiv(T1, T2: char): char;
begin
Pop(T1);
Convert(T1, 'L', 'D7');
if (T1 = 'L') or (T2 = 'L') then begin
Convert(T2, 'L', 'D0');
GenLongDiv;
PopDiv := 'L';
end
else begin
Convert(T2, 'W', 'D0');
GenDiv;
PopDiv := T1;
end;
end;
{–}
Две подпрограммы генерации кода:
{–}
{ Divide Top of Stack by Primary (Word) }
procedure GenDiv;
begin
EmitLn('DIVS D0,D7');
Move('W', 'D7', 'D0');
end;
{–}
{ Divide Top of Stack by Primary (Long) }
procedure GenLongDiv;
begin
EmitLn('JSR DIV32');
end;
{–}
Обратите внимание, мы предполагаем, что DIV32 оставляет результат (длинное слово) в D0.
ОК, установите новые процедуры деления. Сейчас у вас должна быть возможность генерировать код для любого вида арифметических выражений. Погоняйте ее!
- Введение
- Что будет дальше?
- Таблица идентификаторов
- Добавление записей
- Распределение памяти
- Объявление типов
- Присваивания
- Трусливый выход
- Более приемлемое решение
- Литеральные аргументы
- Аддитивные выражения
- Почему так много процедур?
- Мультипликативные выражения
- Умножение
- Деление
- Завершение
- Приводить или не приводить
- Заключение
- Определение версии клиента
- Определение целей. Построение цепочек
- 3.2.1.2. Начальное выделение памяти: malloc()
- 1.2. Определение количества информации. Единицы измерения количества информации
- Определение пользовательского формата числовых данных
- Определение необходимого системного вызова
- Раздел 1 Лояльность: определение и ключевые факторы
- Определение позиционного уровня
- Распределение торговой площади по категориям
- 3.3. Определение объектов защиты
- Определение собственной миссии
- Распределение функциональных обязанностей между должностями