Книга: Почему

Зачем нужны причины

Зачем нужны причины

Причинам сложно дать определение, их нелегко отыскать – так в чем же заключается их смысл, почему мы в них нуждаемся?

Есть три основополагающие вещи, которые могут выполняться либо только по определенным причинам, либо лучше всего по определенным причинам: прогнозирование, объяснение и вмешательство.

Скажем, нужно предсказать, кто выиграет президентские выборы в США. Предлагаются всевозможные модели: к примеру, кандидат от республиканцев должен выиграть праймериз[37] в Огайо; ни один президент США со времен Рузвельта не был переизбран, если на тот момент уровень безработицы превышал 7,2 %[38]; в США на президентских выборах побеждали только кандидаты-мужчины (по крайней мере на момент написания этой книги)[39].

Но модели – всего лишь модели. Можно обнаружить неограниченное количество общих свойств у группы лиц, когда-либо побеждавших на выборах, но это не объяснит, почему победил тот или иной кандидат. Видимо, избирателям важен именно уровень безработицы; а может, этот факт просто дает косвенную информацию о состоянии дел в стране и экономике, и мы должны сделать вывод, что при высоком уровне безработицы люди стремятся к переменам? Хуже того, если выявленные зависимости оказываются простыми совпадениями, они в любой момент могут дать сбой. Кроме того, выводы базируются на ограниченном массиве данных; в США было только 44 президента[40], и менее половины из них переизбирались на новый срок.

Перед нами та самая проблема «черного ящика», в который мы закладываем некие данные и получаем на выходе прогнозы без всяких убедительных объяснений или доводов. Если неизвестно, почему эти прогнозы работают (например, почему победа в конкретном штате приводит к триумфу на национальных выборах), то нельзя и предвидеть, когда они не сработают. С другой стороны, мы знаем, что, скажем, Огайо «решает» исход выборов просто в силу того, что его демографический паттерн обладает высокой репрезентативностью в масштабах всей страны и не привязан к политической партии. Значит, можно предположить, что при серьезных изменениях в составе населения штата из-за мигрантов исчезнет причина, по которой этот фактор берется за основу прогнозов. Реально также провести национальный опрос и получить более прямой и точный показатель измерения, если ситуация в этом регионе – всего лишь косвенный индикатор общенациональных тенденций.

Получается, причины дают более строгие методы предсказания событий, чем корреляции.

Возьмем другой пример. Скажем, определенная комбинация генов повышает как толерантность к физическим нагрузкам, так и иммунный ответ[41]. Таким образом, можно утверждать, что повышенная толерантность к нагрузкам – хороший индикатор, характеризующий иммунный ответ конкретного лица.

Однако степень толерантности к нагрузкам дает очень приблизительную оценку, поскольку может проистекать из множества причин, помимо мутации генов (например, из-за хронической сердечной недостаточности). Таким образом, использование только показателя толерантности к нагрузкам в качестве диагностического индикатора способствует ошибкам и, следовательно, недооценке или переоценке факторов риска. Что еще более важно, зная, что генетическая вариативность может быть причиной и того и другого, мы можем измерить риски двумя способами и обойтись без избыточных уточнений.

Отметим, однако, что этот случай не подходит к ситуации, когда генетические тесты характеризуются высокой степенью погрешности. Здесь данные о физических нагрузках действительно становятся подкрепляющими доказательствами. В конце концов, послать пациента в лабораторию физиологии спорта гораздо затратнее, чем провести тест на какую-то аллель[42]. И все же мы не можем противопоставлять конкретность измерения его стоимости (если бы физиологические тесты были намного дешевле генетических, мы всегда склонялись бы начинать именно с них, даже понимая их косвенный характер), пока не узнаем подоплеку причинных взаимосвязей этих факторов. Итак, даже если наша единственная цель – прогнозирование (к примеру, кто выиграет выборы или каков риск заболеть конкретной болезнью), понимая надежность тех или иных факторов в качестве прогнозного индикатора, мы улучшим как точность, так и стоимость/эффективность принятия решений.

А теперь, скажем, мы хотим узнать, почему между некими событиями существует взаимосвязь. Какова зависимость между падением остроты зрения и снижением веса? Одно только знание, что то и другое часто наблюдается одновременно, не дает полной картины. Разобраться в сути мы сможем, только выяснив, что у этих симптомов есть общая причина – диабет. Необходимость выяснять истоки в подобного рода объяснениях может показаться очевидной, однако, не избегая выяснения, мы при этом редко глубоко копаем.

Возможно, вы прочли научный доклад о том, что потребление красного мяса повышает смертность. Не зная, однако, почему это так, вы не извлечете из этих сведений практическую пользу. Возможно, любители мяса больше пьют спиртного или избегают физических упражнений. Аналогично, даже если рост смертности не коррелирует с другими факторами риска, но как-то связан с потреблением этого продукта, может существовать множество способов снизить опасность. Все зависит от того, с чем именно связано увеличение летальности – с количеством несчастных случаев на барбекю или с потреблением мяса как таковым (например, можно готовить его другими способами или стать вегетарианцем). На самом деле мы должны не просто осознать взаимосвязь между красным мясом и смертью, а обнаружить причину, действительно вызывающую летальный исход.

Я хочу, чтобы вы внимательно прочитали предыдущую фразу, потому что средства массовой информации пестрят различными утверждениями касательно диет и здоровья (яйца вызывают или предотвращают разные недомогания; кофе повышает или понижает риск смерти и т. п.). В некоторых материалах можно найти доказательства помимо корреляции по отдельным группам населения, но все они заслуживают определенной доли скептицизма и критического подхода, особенно когда возникает желание использовать их как основу для своих действий (этой теме посвящена глава 9).

В других случаях наша цель – объяснить отдельные события. Почему вы опоздали на работу? Почему кто-то заболел? Почему одна страна оккупировала другую? В подобных ситуациях важно знать, кто или что в ответе за событие.

Знание о том, что пробки на дорогах – залог опозданий, что с возрастом развиваются недомогания, а в основе многих войн лежат идеологические разногласия, ничего не скажет о конкретных событиях. Вы могли опоздать, потому что сломалась ваша машина; Джейн заболела, потому что съела что-то несвежее; воюющие стороны сражались за территории или за ресурсы.

Докопаться до коренных причин событий важно, во-первых, чтобы построить планы на будущее (Джейн больше не будет ходить в ресторан, где ей подали несвежую пищу, при этом необязательно вообще исключать из рациона конкретные продукты) и, во-вторых, чтобы оценить ответственность (кого Джейн должна винить за свое недомогание). Это поможет и должным образом отреагировать на событие. Ряд заболеваний и лекарств, прописанных для лечения, вызывают одинаковые симптомы. Скажем, хроническая почечная недостаточность способна перейти в острую фазу, но выписанное лекарство от этой болезни также (в редких случаях) ведет к подобному исходу. Если врач видит, что пациент с таким диагнозом принимает это лекарство, он обязан удостовериться, действительно ли причиной его болезни стало лекарство, и назначить соответствующий курс лечения. Знание о том, что почечная недостаточность в принципе может быть результатом приема лекарства, не поможет врачу сделать вывод относительно конкретного пациента, однако именно эта информация необходима, чтобы отменить препарат.

Самая важная потенциальная область приложения каузального знания – вмешательство.

Мы не просто хотим знать, почему случаются те или иные вещи, – есть потребность воспользоваться этой информацией, чтобы предотвратить или вызвать определенные результаты. Вероятно, вам нужно понять, как изменить диетические привычки, чтобы улучшить здоровье. Может, стоит принимать витамины? Стать вегетарианцем? Снизить потребление углеводов? Если такие меры в принципе не способны привести к желаемому эффекту, получится хотя бы избежать больших затрат времени и денег. Кроме того, нужно учитывать степень воздействия. Наверное, вы слышали, что некая диета дает стопроцентную гарантию похудения. Но, прежде чем принимать какие-то решения, неплохо узнать, кто и сколько килограммов уже потерял с ее помощью, наблюдались ли отличия в ее действии на разных людей и каковы результаты в сравнении с другими диетами (например, к потере веса привела простая информированность о пищевых предпочтениях). Мы желаем одновременно оценить, действительно ли выполненные действия дали эффект (на самом ли деле публикации об энергетической ценности продуктов питания улучшили здоровье населения Нью-Йорка), и предсказать последствия будущих действий (что произойдет, если снизить количество соли в фастфуде).

Власти должны определять, как их политика повлияет на население, а также разрабатывать программы реализации желательных изменений. Скажем, ученые обнаруживают, что рацион, богатый солью, ведет к ожирению. В результате законодатели решают принять закон, направленный на снижение количества соли в ресторанном меню и готовых продуктах. Эта политика окажется полностью неэффективной, если единственным доводом в пользу связи соли и ожирения будет факт, что высококалорийный фастфуд и есть истинная причина ожирения, а в нем всегда много соли. Люди по-прежнему будут употреблять фастфуд, поэтому целевые усилия для начала должны быть направлены именно на этот момент. Мы должны быть уверены, что меняем причины, которые реально повлияют на результат. Если же нацелить их на нечто, так или иначе связанное со следствием (к примеру, запретить спички, чтобы снизить риск рака легких из-за курения), воздействия окажутся неэффективными.

Далее мы увидим, что дело еще больше усложняется, если вмешательства имеют побочные эффекты. Итак, требуется узнать не только причины конкретного результата, но и его следствия. Например, увеличение физической активности ведет к потере веса, но «компенсационный эффект» может вынудить людей потреблять больше калорий, чем они сожгли (в результате вес набирается). Вместо того чтобы отыскивать изолированные связи между отдельными переменными, следует понять более масштабную картину взаимосвязей.

Оглавление книги


Генерация: 0.057. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз