Книга: Фундаментальные алгоритмы и структуры данных в Delphi
Класс односвязного списка
Класс односвязного списка
Перед тем как приступить к реализации класса TtdSingleLinkList для представления односвязного списка, рассмотрим несколько вводных замечаний.
Начнем с самого начала. Как уже упоминалось, было бы очень удобно использовать связный список, не беспокоясь о его узлах. Хотелось бы, чтобы класс связного списка мог работать с любыми типами указателей, подобно классу TList. Для получения доступа к элементам связного списка было бы желательно использовать индекс (несмотря на то что это может негативно сказаться на быстродействии), но еще лучше было бы использовать терминологию баз данных. Так, в связном списке можно использовать курсор, который указывает на "текущий" элемент списка. Тогда можно было бы написать методы для позиционирования курсора перед любым элементом списка, перемещения курсора на следующий элемент, вставки и удаления элемента в позиции курсора и т.д. Поскольку мы создаем связный список в виде класса, мы можем работать с родительским объектом текущего элемента, что позволит запрограммировать метод Insert так, как он реализован в TList (т.е. за счет перемещения текущего элемента и всех последующих элементов на одну позицию и вставки в освободившееся место нового элемента). Аналогично можно реализовать и метод Delete.
Интерфейс класса TtdSingleLinkList выглядит следующим образом:
Листинг 3.7. Класс TtdSingleLinkList
TtdSingleLinkList = class private
FCount : longint;
FCursor : PslNode;
FCursorIx: longint;
FDispose : TtdDisposeProc;
FHead : PslNode;
FNanie : TtdNameString;
FParent : PslNode;
protected
function sllGetItem(aIndex : longint): pointer;
procedure sllSetItem(aIndex : longint; aItem : pointer);
procedure sllError(aErrorCode : integer;
const aMethodName : TtdNameString);
class procedure sllGetNodeManager;
procedure sllPositionAtNth(aIndex : longint);
public
constructor Create(aDispose : TtdDisposeProc);
destructor Destroy; override;
function Add(aItem : pointer): longint;
procedure Clear;
procedure Delete(aIndex : longint);
procedure DeleteAtCursor;
function Examine : pointer;
function First : pointer;
function IndexOf(aItem : pointer): longint;
procedure Insert(aIndex : longint; aItem : pointer);
procedure InsertAtCursor(aItem : pointer);
function IsAfterLast : boolean;
function IsBeforeFirst : boolean;
function IsEmpty : boolean;
function Last : pointer;
procedure MoveBeforeFirst;
procedure MoveNext;
procedure Remove(aItem : pointer);
procedure Sort(aCompare : TtdCompareFunc);
property Count : longint read FCount;
property Items[aIndex : longint] : pointer read sllGetItem write sllSetItem; default;
property Name : TtdNameString read FName write FName;
end;
Несмотря на то что названия методов соответствуют стандарту TList, появилось несколько новых методов. Метод MoveBeforeFirst помещает курсор перед всеми элементами связного списка. IsBeforeFirst и IsAfterLast возвращают True, если курсор находится, соответственно, перед всеми элементами или после всех элементов списка. Метод MoveNext перемещает курсор на следующий элемент списка. Свойство Items аналогично соответствующему свойству списка TList: элементы нумеруются от 0 до Count-1.
Конструктор Create проверяет, создан ли экземпляр диспетчера узлов, а затем распределяет память для узла, который будет фиктивным начальным узлом. Затем курсор помещается перед всеми узлами (поскольку в списке еще нет узлов, это совсем несложно). Деструктор Destroy очищает связный список и освобождает фиктивный начальный узел, выделенный конструктором Create.
Листинг 3.8. Конструктор и деструктор класса TtdSingleLinkList
constructor TtdSingleLinkList.Create(aDispose : TtdDisposeProc);
begin
inherited Create;
{сохранить процедуру удаления}
FDispose :=aDispose;
{получить диспетчер узлов}
s 11 GetNodeManager;
{распределить память под начальный узел}
FHead := PslNode (SLNodeManager.AllocNode);
FHead^.slnNext := nil;
FHead^.slnData := nil;
{установить курсор}
MoveBeforeFirst;
end;
destructor TtdSingleLinkList.Destroy;
begin
{удалить все узлы, включая начальный фиктивный узел}
Clear;
SLNodeManager.FreeNode(FHead);
inherited Destroy;
end;
Особый интерес здесь представляет тот факт, что связный список организован таким образом, что для всех экземпляров класса TtdSingleLinkList создается только один диспетчер узлов. Все экземпляры пользуются одним и тем же диспетчером. Можно было бы запрограммировать, чтобы каждый класс создавал свой диспетчер, но это бы означало использование большого дополнительного объема для экземпляра класса. Таким образом, учитывая то, что в приложении, в котором имеется один связный список, как правило, есть несколько списков, было решено ввести переменную класса. Но во всех этих рассуждениях присутствует один недостаток: Delphi не поддерживает переменные класса. Поэтому в коде мы имитируем такую переменную, объявив ее как глобальную в разделе implementation модуля. Если вы просмотрите содержимое файла TDLnkLst.pas, то найдете следующее объявление:
var
SLNodeManager : TtdNodeManager;
Все методы класса односвязного списка можно разбить на две категории: методы, действующие по последовательной схеме (MoveBeforeFirst, InsertAtCursor и т.д.), и методы, которые работают со списком как с массивом (свойство Items, методы Delete, IndexOf и т.д.). Рассмотрим сначала методы первой группы, поскольку мы уже говорили о принципе их работы в начале главы при описании связных списков. Для упрощения реализации мы не только храним курсор (т.е. указатель на текущий узел) в объекте, но и родительский объект курсора (т.е. указатель на родительский объект текущего курсора). Такая схема позволяет упростить методы вставки и удаления элементов.
Листинг 3.9. Стандартные операции со связным списком для класса TtdSingleLinkList
procedure TtdSingleLinkList.Clear;
var
Temp : PslNode;
begin
{удалить все узлы, за исключением начального; при возможности освободить все данные}
Temp := FHead^.slnNext;
while (Temp <> nil) do
begin
FHead^.slnNext := Temp^.slnNext;
if Assigned(FDispose) then
FDispose(Temp^.slnData);
SLNodeManager.FreeNode(Temp);
Temp := FHead^.slnNext;
end;
FCount := 0;
MoveBeforeFirst;
end;
procedure TtdSingleLinkList.DeleteAtCursor;
begin
if (FCursor = nil) or (FCursor = FHead) then
sllError(tdeListCannotDelete, 'Delete');
{удалить все элементы}
if Assigned(FDispose) then
FDispose(FCursor^.slnData);
{удалить ссылки на узел и удалить сам узел}
FParent^.slnNext := FCursor^.slnNext;
SLNodeManager.FreeNode(FCursor);
FCursor := FParent^.slnNext;
dec(FCount);
end;
function TtdSingleLinkList.Examine : pointer;
begin
if (FCursor = nil) or (FCursor = FHead) then
sllError(tdeListCannotExamine, 'Examine');
{вернуть данные с позиции курсора}
Result := FCursor^.slnData;
end;
procedure TtdSingleLinkList.InsertAtCursor(aItem : pointer);
var
NewNode : PslNode;
begin
{убедиться, что вставка производится не перед первой позицией; если курсор находится перед первой позицией, переместить его на одну позицию вперед}
if (FCursor = FHead) then
MoveNext;
{распределить новый узел и вставить его в позицию курсора}
NewNode := PslNode (SLNodeManager.AllocNode);
NewNode^.slnData := aItem;
NewNode^.slnNext := FCursor;
FParent^.slnNext := NewNode;
FCursor := NewNode;
inc(FCount);
end;
function TtdSingleLinkList.IsAfterLast : boolean;
begin
Result := FCursor;
nil;
end;
function TtdSingleLinkList.IsBeforeFirst : boolean;
begin
Result := FCursor = FHead;
end;
function TtdSingleLinkList.IsEmpty : boolean;
begin
Result := (Count = 0);
end;
procedure TtdSingleLinkList.MoveBeforeFirst;
begin
{установить курсор на начальный узел}
FCursor := FHead;
FParent := nil;
FCursorIx := -1;
end;
procedure TtdSingleLinkList.MoveNext;
begin
{переместить курсор по его указателю Next, игнорировать попытку выхода за конечный узел списка}
if (FCursor <> nil) then begin
FParent := FCursor;
FCursor := FCursor^.slnNext;
inc(FCursorIx);
end;
end;
Вы, возможно, обратили внимание, что некоторые из приведенных методов пользуются полем объекта FCursorIx. Именно это поле позволяет обеспечить высокую эффективность методов, основанных на использовании индекса, поскольку в нем хранится индекс курсора (при этом первый узел имеет индекс 0, точно так же как в TList). Значение поля используется методом ellPositionAtNth, который оптимальным образом перемещает курсор в позицию с указанным индексом.
Листинг 3.10. Метод sllPositionAtNth
procedure TtdSingleLinkList.sllPositionAtNth(aIndex : longint);
var
WorkCursor : PslNode;
WorkParent : PslNode;
WorkCursorIx : longint;
begin
{проверить, корректно ли задан индекс}
if (aIndex < 0) or (aIndex >= Count) then
sllError(tdeListInvalidIndex, 'sllPositionAtNth');
{обработать наиболее простой случай}
if (aIndex = FCursorIx) then
Exit;
{—для повышения быстродействия использовать локальные переменные—}
{если заданный индекс меньше индекса курсора, переместить рабочий курсор в позицию перед всеми узлами}
if (aIndex < FCursorIx) then begin
WorkCursor := FHead;
WorkParent :=nil;
WorkCursorIx := -1;
end
{в противном случае поставить рабочий курсор в позицию текущего курсора}
else begin
WorkCursor :=FCursor;
WorkParent := FParent;
WorkCursorIx := FCursorIx;
end;
{пока индекс рабочего курсора меньше заданного индекса, передвинуть его на одну позицию вперед}
while (WorkCursorIx < aIndex) do
begin
WorkParent := WorkCursor;
WorkCursor := WorkCursor^.slnNext;
inc(WorkCursorIx);
end;
{установить реальный курсор равным рабочему курсору}
FCursor := WorkCursor;
FParent := WorkParent;
FCursorIx := WorkCursorIx;
end;
Метод sllPositionAtNth для увеличения быстродействия использует локальные переменные. Вначале метод определяет, больше ли заданный индекс индекса курсора (в этом случае поиск узла начинается с позиции курсора) или же он меньше (поиск узла начинается с начала списка). Без знания позиции курсора мы всегда бы начинали поиск с начала списка.
Реализация остальных методов, основанных на использовании индекса, после написания кода метода sllPositionAtNth не представляет особых трудностей.
Листинг 3.11. Методы класса TtdSingleLinkList, основанные на использовании индекса
procedure TtdSingleLinkList.Delete(aIndex : longint);
begin
{установить курсор в позицию с заданным индексом}
sllPositionAtNth(aIndex);
{удалить элемент в позиции курсора}
DeleteAtCursor;
end;
function TtdSingleLinkList.First : pointer;
begin
{установить курсор на первый узел}
SllPositionAtNth(0);
{вернуть данные с позиции курсора}
Result := FCursor^.slnData;
end;
procedure TtdSingleLinkList.Insert(aIndex : longint; aItem : pointer);
begin
{установить курсор в позицию с заданным индексом}
sllPositionAtNth(aIndex);
{вставить элемент в позицию курсора}
InsertAtCursor(aItem);
end;
function TtdSingleLinkList.Last : pointer;
begin
{установить курсор в позицию с заданным индексом}
sllPositionAtNth(pred(Count));
{вернуть данные с позиции курсора}
Result := FCursor^.slnData;
end;
function TtdSingleLinkList.sllGetItem(aIndex : longint): pointer;
begin
{установить курсор в позицию с заданным индексом}
sllPositionAtNth(aIndex);
{вернуть данные с позиции курсора}
Result := FCursor^.slnData;
end;
procedure TtdSingleLinkList.sllSetItem(aIndex : longint; aItem : pointer);
begin
{установить курсор в позицию с заданным индексом}
sllPositionAtNth(aIndex);
{если возможно удалить заменяемые данные, удалить их}
if Assigned(FDispose) and (aItem <> FCursor^.sInData) then
FDispose(FCursor^.slnData);
{заменить данные}
FCursor^.slnData := aItem;
end;
Теперь нам осталось рассмотреть еще несколько методов, которые по разным причинам реализованы в соответствие с главными принципами. Метод Add добавляет элемент в конец связного списка. Код поиска последнего узла достаточно прост и имеет смысл реализовать его в коде самого метода. В эту группу входит и метод IndexOf. Поиск заданного элемента с помощью этого метода можно организовать только в коде самого метода. После написания кода метода IndexOf реализация Remove становиться предельно простой.
Листинг 3.12. Методы Add, IndexOf и Remove
function TtdSingleLinkList.Add(aItem : pointer): longint;
var
WorkCursor : PslNode;
WorkParent : PslNode;
begin
{для увеличения быстродействия используются локальные переменные}
WorkCursor :=FCursor;
WorkParent :=FParent;
{перешли в конец связного списка}
while (WorkCursor <> nil) do
begin
WorkParent := WorkCursor;
WorkCursor := WorkCursor^.slnNext;
end;
{перенести реальный курсор}
FParent := WorkParent;
FCursor := nil;
FCursorIx := Count;
Result := Count;
{вставить элемент в позицию курсора}
InsertAtCursor(aItem);
end;
function TtdSingleLinkList.IndexOf(aItem : pointer): longint;
var
WorkCursor : PslNode;
WorkParent : PslNode;
WorkCursorIx : longint;
begin
{установить рабочий курсор на первый узел (если таковой существует)}
WorkParent := FHead;
WorkCursor := WorkParent^.slnNext;
WorkCursorIx := 0;
{идти по списку в поисках требуемого элемента}
while (WorkCursor <> nil) do
begin
if (WorkCursor^.slnData = aItem) then begin
{требуемый элемент найден; записать результат; установить реальный курсор в позицию рабочего курсора}
Result := WorkCursorIx;
FCursor := WorkCursor;
FParent := WorkParent;
FCursorIx := WorkCursorIx;
Exit;
end;
{перешли к следующему узлу}
WorkParent := WorkCursor;
WorkCursor := WorkCursor^.slnNext;
inc(WorkCursorIx);
end;
{требуемый элемент не найден}
Result := -1;
end;
procedure TtdSingleLinkList.Remove(aItem : pointer);
begin
if (IndexOf (aItem) <> -1) then
DeleteAtCursor;
end;
Полный код класса TtdSingleLinkList можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDLnlLst.pas.
Только что написанный нами класс обладает максимально возможной эффективностью. Узлы распределяются блоками. Определяющим фактором эффективности перехода от одного узла к другому, в общем случае, является скорость работы операционной системы по листанию страниц виртуальной памяти, но очевидно, что она будет зависеть от схемы использования связного списка. Если вставки и удаления элементов выполняются в случайном порядке, узлы будут разбросаны по различным страницам памяти. Как и в случае с классом TList, данные, на которые указывают ссылки каждого узла, будут находиться в разных участках памяти. Но здесь, к сожалению, мы ничего поделать не можем.
- Узлы связного списка
- Создание односвязного списка
- Класс двухсвязного списка
- Создание списка
- Добавление, изменение и удаление элементов списка
- Восстановление элементов списка из Корзины
- Добавление, изменение и удаление столбцов списка
- Сортировка и фильтрация списка
- Добавление и изменение представления списка
- Удаление списка
- Добавление списка необходимых предметов
- Практическая работа 50. Сортировка списка данных