Книга: UNIX: взаимодействие процессов
10.12. Использование семафоров несколькими процессами
10.12. Использование семафоров несколькими процессами
Правила совместного использования размещаемых в памяти семафоров несколькими процессами просты: сам семафор (переменная типа semt, адрес которой является первым аргументом sem_init) должен находиться в памяти, разделяемой всеми процессами, которые хотят его использовать, а второй аргумент функции sem_init должен быть равен 1.
ПРИМЕЧАНИЕ
Эти правила аналогичны требованиям к разделению взаимного исключения, условной переменной или блокировки чтения-записи между процессами: средство синхронизации (переменная типа pthread_mutex_t, pthread_cond_t или pthread_rwlock_t) должно находиться в разделяемой памяти и инициализироваться с атрибутом PTHREAD_PROCESS SHARED.
Что касается именованных семафоров, процессы всегда могут обратиться к одному и тому же семафору, указав одинаковое имя при вызове sem_open. Хотя указатели, возвращаемые sem_open отдельным процессам, могут быть различны, все функции, работающие с семафорами, будут обращаться к одному и тому же именованному семафору.
Что произойдет, если мы вызовем функцию sem_open, возвращающую указатель на тип sem_t, а затем вызовем fork? В описании функции fork в стандарте Posix.1 говорится, что «все открытые родительским процессом семафоры будут открыты и в дочернем процессе». Это означает, что нижеследующий код верен:
sem_t *mutex; /* глобальный указатель, копируемый, при вызове fork() */
…
/* родительский процесс создает именованный семафор */
mutex = Sem_open(Px_ipc_name(NAME), O_CREAT | O_EXCL, FILE_MODE, 0);
if ((childpid = Fork()) == 0) {
/* дочерний процесс */
…
Sem_wait(mutex);
…
}
/* родительский процесс */
…
Sem_post(mutex);
…
ПРИМЕЧАНИЕ
Причина, по которой следует аккуратно относиться к передаче семафоров при порождении процессов, заключается в том, что состояние семафора может храниться в переменной типа sem_t, но для его работы может требоваться и другая информация (например, дескрипторы файлов). В следующей главе мы увидим, что семафоры System V однозначно определяются их целочисленными идентификаторами, возвращаемыми функцией semget. Любой процесс, которому известен идентификатор, может получить доступ к семафору. Вся информация о семафоре System V хранится в ядре, а целочисленный идентификатор просто указывает номер семафора ядру.
- 10.1.Введение
- 10.2. Функции sem_open, sem_close и sem_unlink
- 10.3. Функции sem_wait и sem_trywait
- 10.4. Функции sem_post и sem_getvalue
- 10.5. Простые примеры
- 10.6. Задача производителей и потребителей
- 10.7. Блокирование файлов
- 10.8. Функции sem_init и sem_destroy
- 10.9. Несколько производителей, один потребитель
- 10.10. Несколько производителей, несколько потребителей
- 10.11. Несколько буферов
- 10.12. Использование семафоров несколькими процессами
- 10.13. Ограничения на семафоры
- 10.14. Реализация с использованием FIFO
- 10.15. Реализация с помощью отображения в память
- 10.16. Реализация с использованием семафоров System V
- 10.17. Резюме
- Упражнения
- 10.16. Реализация с использованием семафоров System V
- Восстановление с использованием инструмента gbak
- Типы страниц и их использование
- Использование констант
- Использование переменной окружения ISC_PATH
- Использование сервера Yaffil внутри процесса
- Использование CAST() с типами дата
- Использование типов содержимого и столбцов
- Вызов хранимых процедур InterBase с использованием стандартного синтаксиса ODBC
- Использование кнопки Автосумма
- 24.7. Использование программы-твикера
- Использование отдельных процессоров XSLT