Книга: Основы объектно-ориентированного программирования

Пять принципов

Из предыдущих правил и, косвенным образом, из критериев следуют пять принципов конструирования ПО:

[x]. Принцип Лингвистических Модульных Единиц (Linguistic Modular Units).

[x]. Принцип Самодокументирования (Self-Documentation).

[x]. Принцип Унифицированного Доступа (Uniform Access).

[x]. Принцип Открыт-Закрыт (Open-Closed).

[x]. Принцип Единственного выбора (Single Choice).

Лингвистические Модульные Единицы

Принцип Лингвистических Модульных Единиц утверждает, что формализм описания ПО на различных уровнях (спецификации, проектирования, реализации) должен поддерживать модульность:

Принцип Лингвистических Модульных Единиц

Модули должны соответствовать синтаксическим единицам используемого языка.

Упомянутым выше языком может быть язык программирования, язык проектирования, язык оформления технических требований и т. д. В случае языка программирования модули должны независимо компилироваться.

Этот принцип на любом уровне (анализа, проектирования, реализации) не допускает объединения метода, исходящего из концепции модульности, и языка, не содержащего соответствующих модульных конструкций. В самом деле, нередко встречаются фирмы, которые на этапе проектирования применяют некие методологические подходы, например используя модули языка Ada, но затем реализуют свои замыслы в таком языке программирования, как Pascal или C, не поддерживающим эти подходы. Такой подход нарушает некоторые из критериев модульности:

[x]. Непрерывность: если границы модуля в окончательном тексте программы не соответствуют логической декомпозиции спецификации или проекта, то при сопровождении системы и ее эволюции будет затруднительно или даже невозможно поддерживать совместимость различных уровней. Изменение спецификации можно считать небольшим, если оно затрагивает спецификацию лишь небольшого числа модулей. Для обеспечения "непрерывности" должно иметь место прямое соответствие между спецификацией, проектом и модулями реализации.

[x]. Прямое отображение: необходимо поддерживать явное соответствие между структурой модели и структурой решения. Для этого необходимо иметь явную синтаксическую идентификацию концептуальных единиц модели и решения, отражающее разбиение, предусмотренное методом разработки.

[x]. Декомпозиция: для разбиения системы на отдельные задачи необходимо быть уверенным, что результатом решения каждой из задач явится четко ограниченная синтаксическая единица; на этапе реализации эти программные компоненты должны быть раздельно компилируемыми.

[x]. Композиция: что же, кроме модулей с однозначно определенными синтаксическими границами, можно объединять между собой?

[x]. Защищенность: лишь в случае, если модули синтаксически разграничены, можно надеяться на возможность контроля области действия ошибок.

Самодокументирование

Подобно правилу Скрытия Информации, принцип Самодокументирования определяет, как следует документировать модули:

Принцип Самодокументирования

Разработчик модуля должен стремиться к тому, чтобы вся информация о модуле содержалась в самом модуле.

Обычно реализации этого принципа мешает общепринятое положение, согласно которому информацию о модуле помещают в отдельные проектные документы.

Документация, рассматриваемая здесь, является внутренней документацией о компонентах ПО. Пользовательская документация о выпущенном программном продукте может быть отдельным документом, реализованном в виде печатного текста, либо размещенном на CD-ROM или страницах в Интернете. Как отмечалось при обсуждении вопроса о качестве программного обеспечения, следствием общего принципа самодокументирования является наблюдаемая сейчас тенденция к большему использованию средств диалоговой оперативной подсказки. (См."О документировании" лекция 1)

Наиболее очевидным обоснованием необходимости принципа Самодокументирования является критерий модульной понятности. По-видимому, однако, более важным является то, что этот принцип помогает реализации критерия непрерывности. Если программное обеспечение и документацию к нему рассматривать как отдельные объекты, то трудно гарантировать, что они будут оставаться совместимыми - будут синхронно изменяться при всех изменениях системы. Однако если хранить все в одном месте, то это, хотя и не дает полную гарантию, но все же поможет поддерживать совместимость.

Этот принцип, безобидный на первый взгляд, противоречит многому из того, что обычно рекомендуется к практическому применению в литературе по разработке ПО. Преобладает мнение, что разработчик ПО - инженер-программист - должен делать то, чем, по-видимому, обязаны заниматься остальные инженеры: производить килограмм бумаги на каждый грамм фактически создаваемой продукции. Предложение вести запись процесса разработки ПО является неплохим советом, но из этого вовсе не следует, что программа и документация к ней являются разными продуктами.

Такой подход игнорирует характерное свойство ПО, которое здесь неоднократно обсуждается: возможность его изменения. Если рассматривать программу и документацию к ней как два разных продукта, то вскоре можно оказаться в ситуации, когда в документации утверждается одно, а программа делает нечто иное. А ведь наличие неправильной документации намного хуже, чем ее отсутствие.

Главным достижением последних нескольких лет явилось появление стандартов качества ПО. Разработаны сертификаты ISO, стандарт "2167" и его преемники, Модель Полноты Потенциала (Capability Maturity Model), предложенная Институтом программной инженерии (Software Engineering Institute). Но поскольку они брали начало из моделей, используемых в других отраслях знания, они наделены обширным "хвостом" бумажной документации. Некоторые из этих стандартов могли бы оказать значительно большее влияние на качество ПО, (помимо того, что они дают администраторам программного продукта средство для оправданий в случае последующих эксплуатационных неполадок) если бы они включали принцип Самодокументирования.

В этом курсе следствием принципа Самодокументирования является метод документирования классов - модулей при ОО-конструировании ПО, предусматривающий включение документации в сам модуль. Это вовсе не означает, что сам модуль является своей документацией: текст программы обычно содержит слишком много подробностей (это и явилось доводом в пользу скрытия информации). Просто модуль должен содержать свою документацию. (См. "Использование утверждений класса (assertions) для документирования" в лекции 11. См. также лекция 5 курса "Основы объектно-ориентированного проектирования" и последние два упражнения в ней.)

При таком подходе ПО превращается в единственный программный продукт, обеспечивающий его различные представления или облики (views). Один облик, пригодный для компиляции и выполнения, - полный исходный текст модуля. Другой - документация, задающая абстрактный интерфейс модуля, позволяющий разработчикам программного обеспечения создавать модули-клиенты, не знакомясь с содержанием исходного модуля, что соответствует правилу Скрытия Информации. Возможны и другие представления.

Унифицированный Доступ

Хотя вначале может показаться, что принцип Унифицированного Доступа направлен лишь на решение проблем, связанных с принятой нотацией, в действительности он задает правило проектирования, влияющее на многие аспекты ОО-разработки ПО. Принцип следует из критерия Непрерывности; его можно рассматривать и как частный случай правила Скрытия Информации.3.6)

Пусть x - имя, используемое для доступа к некоторому элементу данных, который в последующем будем называть объектом. Пусть f - имя компонента (feature), применимого к x. Под компонентом понимается некоторая операция; далее этот термин будет определен подробнее. Например, x может быть переменной, представляющей счет в банке, а f - компонент, задающий текущий баланс этого счета (account's current balance). Унифицированный Доступ направлен на решение вопроса о том, какой должна быть нотация, задающая применение f к x, не содержащая каких-либо преждевременных обязательств по способу реализации f.

Во многих языках проектирования и программирования выражение, описывающее применение f к x, зависит от реализации f, выбранной разработчиком. Это может быть свойство, хранимое вместе с x, или метод, вызываемый всякий раз, когда это требуется. В примере с банковскими счетами и остатками на счетах возможно использование обоих подходов:

[x]. A1 Можно представить баланс банковского счета в виде одного из полей записи, описывающей каждый счет. При использовании такого подхода каждая банковская операция, изменяющая баланс, должна предусматривать корректировку соответствующего поля.

[x]. A2 Можно определить функцию, вычисляющую баланс на основании других полей этой записи, например полей, представляющих списки денежных сумм, снятых со счета и внесенных на счет. При использовании такого подхода значение баланса не сохраняется, а вычисляется по запросу.

В общепринятой нотации таких языков, как Pascal, Ada, C, C++ и Java используется обозначение x.f для случая A1 и f(x) для случая A2.


Рис. 3.11.  Два представления банковского счета

Выбор между представлениями A1 и A2 это компромисс между "памятью и временем": первое экономит на вычислениях, а второе - на памяти. Решение о выборе одного из вариантов является типичным примером решения, изменяемого разработчиком, по крайней мере один раз за время существования проекта. Поэтому с целью поддержания непрерывности желательно иметь нотацию для доступа к компоненту, не зависящую от выбора одного из двух представлений. Если способ реализации x'ов на некотором этапе разработки проекта будет изменен, то это не потребует изменений в модулях, использующих вызов f.

Мы рассмотрели пример принципа Унифицированного Доступа. В общем виде принцип можно сформулировать так:

Принцип Унифицированного Доступа

Все службы, предоставляемые модулем, должны быть доступны в унифицированной нотации, которая не подведет вне зависимости от реализации, использующей память или вычисления.

Этому принципу удовлетворяют немногие языки. Старейшим из них был Algol W, в котором как вызов функции, так и доступ к полю записывались в виде a(x). Первым из ОО-языков, удовлетворяющих Принципу Унифицированного Доступа, был язык Simula 67, использовавший обозначение x.f в обоих случаях. Нотация, предлагаемая в лекциях 7-18 этого курса, будет поддерживать такое соглашение.

Открыт-Закрыт

Любой метод модульной декомпозиции должен удовлетворять принципу семафора: Открыт-Закрыт:

Принцип Открыт-Закрыт

Модули должны иметь возможность быть как открытыми, так и закрытыми.

Противоречие является лишь кажущимся, поскольку термины соответствуют разным целевым установкам:

[x]. Модуль называют открытым, если он еще доступен для расширения. Например, имеется возможность расширить множество операций в нем или добавить поля к его структурам данных.

[x]. Модуль называют закрытым, если он доступен для использования другими модулями. Это означает, что модуль (его интерфейс - с точки зрения скрытия информации) уже имеет строго определенное окончательное описание. На уровне реализации закрытое состояние модуля означает, что модуль можно компилировать, сохранять в библиотеке и делать его доступным для использования другими модулями (его клиентами). На этапе проектирования или спецификации закрытие модуля означает, что он одобрен руководством, внесен в официальный репозиторий утвержденных программных элементов проекта - базу проекта (project baseline), и его интерфейс опубликован в интересах авторов других модулей.

Необходимость закрывать модули и необходимость оставлять их открытыми вызываются разными причинами. Для разработчиков ПО естественным состоянием модуля является его открытость, поскольку почти невозможно заранее предусмотреть все элементы - данные, операции - которые могут потребоваться в процессе создания модуля. Поэтому разработчики стараются сохранять гибкость ПО, допускающую последующие изменения и дополнения. Но необходимо, особенно с точки зрения руководителя проекта, закрывать модули. В системе, состоящей из многих модулей, большинство модулей зависимы. Например, модуль интерфейса пользователя может зависеть от модуля синтаксического разбора (parsing module) - синтаксического анализатора и от модуля графики. Синтаксический анализатор может зависеть от модуля лексического анализа, и так далее. Если не закрывать модуль до тех пор, пока не будет уверенности, что он уже содержит все необходимые компоненты, то невозможно будет завершить разработку многомодульной программы: каждый из разработчиков будет вынужден ожидать, когда же завершат свою работу все остальные.

При использовании традиционной методики, две рассмотренные целевые установки оказываются несовместимыми. Либо модуль остается открытым, что не позволяет пользоваться им всем остальным, либо он закрывается, и тогда любое изменение или дополнение может дать начало неприятной цепной реакции трудоемких изменений во многих других модулях, непосредственно или косвенно зависящих от этого исходного модуля.

Два рисунка, приведенные ниже, иллюстрируют ситуацию, в которой трудно согласовать потребности в открытых и закрытых состояниях модуля. На первом рисунке модуль A используется модулями-клиентами B, С, D, которые сами могут иметь своих клиентов - E, F и так далее.


Рис. 3.12.  Модуль А и его клиенты

В процессе течения времени ситуация изменяется и появляются новые клиенты - F и другие, которым требуется расширенная или приспособленная к новым условиям версия модуля A, которую можно назвать A':


Рис. 3.13.  Старые и новые клиенты

При использовании не ОО-методов, возможны лишь два решения этой проблемы, в равной степени неудовлетворительные:

[x]. N1 Можно переделать модуль A так, чтобы он обеспечивал расширенную или видоизмененную функциональность, требуемую новым клиентам.

[x]. N2 Можно сохранить A в прежнем виде, сделать его копию, изменить имя копии модуля на A', и выполнить все необходимые переделки в новом модуле. При таком подходе новый модуль A' никак не будет связан со старым модулем A.

Возможные катастрофические последствия решения N1 очевидны. Модуль A мог использоваться длительное время и иметь многих клиентов, таких как B, С и D. Переделки, необходимые для удовлетворения потребностей новых клиентов, могут нарушить предположения, на основе которых старые клиенты использовали модуль A; в этом случае изменения в A могут "запустить" катастрофическую цепочку изменений у клиентов, у клиентов этих клиентов, и так далее. Для руководителя проекта это будет настоящим кошмаром: внезапно целые части ПО, считавшегося давным-давно завершенным и сданным в эксплуатацию, окажутся заново открытыми, что "запустит" новый цикл разработки, тестирования, отладки и документирования. Многие ли из руководителей проектов ПО захотят видеть себя в роли Сизифа - быть приговоренными вечно катить камень на вершину горы лишь для того, чтобы видеть, как он всякий раз вновь скатывается вниз - и все из-за проблем, вызванных необходимостью заново открывать ранее закрытые модули.

На первый взгляд решение N2 кажется лучшим: оно позволяет избежать синдрома Сизифа, поскольку не требует модификации уже существующих программных средств (показанных в верхней части последнего рисунка). Но в действительности, это решение может иметь еще худшие последствия, поскольку оно лишь отодвигает час расплаты. Экстраполируем воздействие этого решения на множество модулей, - потребуется множество модификаций, занимающих длительное время. В конечном счете, последствия оказываются ужасными: бурный рост числа вариантов исходных модулей, многие из которых очень похожи, хотя и не вполне идентичны.

Для многих организаций по разработке ПО такое изобилие модулей, не согласующееся с количеством выполняемых функций (многие из вариантов, кажущихся различными, оказываются, по существу, клонами), создает серьезную проблему управления конфигурацией ПО. И эту проблему обычно пытаются преодолеть путем использования сложных инструментальных средств. Полезные сами по себе, эти инструментальные средства пытаются "лечить" программу в ситуациях, когда предпочтительней было бы первое из рассмотренных решений. Ведь лучше избежать избыточности, чем создавать ее.

Несомненно, управление конфигурацией окажется полезным, но лишь в случае, если удастся найти модули, нуждающиеся в повторном открытии после возникших изменений, и в то же время избежать повторной компиляции модулей, не нуждающихся в этом. (В упражнении У3.6 предлагается выяснить, какова будет необходимость управления конфигурацией в объектно-ориентированной среде программирования.)

Но как можно получить модули, которые были бы одновременно и открытыми и закрытыми? Можно ли сохранить неизмененным модуль A и всех его клиентов в верхней части рисунка, и в то же время предоставить модуль A' клиентам в нижней части, избегая дублирования программных средств? Благодаря механизму наследования (inheritance), ОО-подход обеспечивает особенно изящный вклад в решение этой проблемы.

Механизм наследования подробно рассматривается в последующих лекциях, а здесь дается лишь общее представление об этом. Для разрешения дилеммы, - изменять или повторно выполнять - наследование позволяет определить новый модуль A' на основе существующего модуля A, констатируя лишь различия между ними. Опишем A' как

class A' inherit
A
redefine f, g, ... end
feature
f is ...
g is ...
...
u is ...
...
end

где предложение feature содержит как определение новых компонент, характерных для A', например u, так и переопределение тех компонент (таких как f, g,:), представление которых в A' отличается от того, которое они имели в A.

Для графической иллюстрации наследования используется стрелка от "наследника" (heir) (нового класса A') к "родителю" (parent) (классу A):


Рис. 3.14.  Адаптация модуля к новым клиентам

Благодаря механизму наследования ОО, разработчики могут осуществлять гораздо более последовательный подход к разработке ПО, чем это было возможно при использовании прежних методов. Один из способов описания принципа Открыт-Закрыт и следующих из него ОО-методов состоит в рассмотрении их как организованного хакерства. Под "хакерством" здесь понимается небрежный (slipshod) подход к компоновке и модификации программы (а вовсе не несанкционированное и, конечно, недопустимое проникновение в компьютерные сети). Хакера можно считать плохим человеком, но часто намерения его чисты. Он может разглядеть полезный фрагмент программы, который почти пригоден для реализации текущих потребностей, намного превосходящих потребности, предусмотренные при первоначальной разработке программы. Вдохновленный похвальным желанием не создавать повторно то, что можно повторно использовать, наш хакер начинает модифицировать исходный текст программы, дополняя его средствами для выполнения новых задач. Конечно, такой порыв неплох, но результатом часто оказывается "засорение" программы многочисленными выражениями вида: if(этот_частный_случай) then. После нескольких повторений, возможно, осуществляемыми разными хакерами, программа начинает походить на ломоть швейцарского сыра, оставленного слишком долго на августовской жаре (безвкусность этой метафоры оправдывается тем, что она хорошо воспроизводит появление в такой программе как "дырок", так и "наростов").

Организованная форма хакерства дает возможность приспосабливаться к изменяющейся структуре решаемых задач, не нарушая непротиворечивости исходной версии.

Небольшое предупреждение: здесь не предлагается неорганизованное хакерство. В частности:

[x]. Если имеется возможность переписать исходную программу так, чтобы она, без излишнего усложнения, смогла удовлетворять потребности нескольких разновидностей клиентов, то следует это сделать.

[x]. Как принцип Открыт-Закрыт, так и переопределение в механизме наследования не позволяют справиться с дефектами разработки, не говоря уже об ошибках в программе. Если в модуле что-то не в порядке, то следует это сразу исправить в исходной программе, не пытаясь разбираться с возникающей проблемой в производном модуле. Возможным исключением из этого правила является случай некорректной программы, которую не разрешено модифицировать. Принцип Открыт-Закрыт и связанные с ним методы программирования, предназначены для адаптации "здоровых" модулей, то есть модулей, которые хотя и не могут решать некоторые новые задачи, однако отвечают строго определенным требованиям в интересах своих клиентов.

Единственный Выбор

Последний из пяти принципов модульности можно считать следствием как принципа Открыт-Закрыт, так и правила Скрытия Информации.

Прежде чем подробно ознакомиться с принципом Единственного Выбора, рассмотрим типичный пример. Предположим, что создается система для работы с библиотекой (в не-программистском смысле слова: с множеством книг и других изданий, а не модулей программы). Эта система будет обрабатывать структуры данных, представляющие различные публикации. Можно объявить соответствующий тип в синтаксисе языков Pascal-Ada:

type PUBLICATION =
record
author, title: STRING;
publication_year: INTEGER
case pubtype:(book, journal, conference_proceedings) of
book:(publisher: STRING);
journal:(volume, issue: STRING);
proceedings:(editor, place: STRING) -- Conference proceedings
end

Здесь использован "тип записи с вариантами" (record type with variants) для описания наборов структур данных с полями, одни из которых (в этом примере author, title, publication_year) являются общими во всех случаях, а другие - характерны для частных вариантов данных.

Использование конкретной синтаксической конструкции здесь не является существенным. Языки программирования Algol 68 и C обеспечивают такую же возможность с помощью типа "объединение" (union). Тип union это тип T, определен как объединение ранее существовавших типов A, B,:: значение типа T это либо значение типа A, либо значение типа B,: . Достоинством типов записей с вариантами является то, что в них с каждым вариантом явно связан некоторый ярлык (tag), например book, journal, conference_proceedings.

Пусть A - модуль, который содержит описанное выше объявление типа. Пока модуль A считается открытым, к нему можно добавлять поля или вводить в него новые варианты. Но когда модуль A передается клиентам, следует закрыть его, а это по умолчанию означает, что в нем уже перечислены все существенные поля и варианты. Итак, пусть B это типичный клиент модуля A. B будет манипулировать с публикациями через некоторую переменную, например:

p: PUBLICATION

Чтобы с помощью p осуществлять какие-либо полезные действия, необходимо явно выделить различные случаи:

case p of
book:... Instructions which may access the field p.publisher...
journal:... Instructions which may access fields p.volume, p.issue...
proceedings:... Instructions which may access fields p.editor, p.place...
end

Здесь оказалась удобной команда выбора case из языков Pascal и Ada; ее синтаксис воспроизводит определение типа записи с вариантами. В Fortran'е и C это может имитироваться многократным использованием команды безусловного перехода goto (switch в языке C). В этих и других языках такой же результат можно получить, используя вложенные команды условного перехода (if ... then ... elseif ... elseif ... else ... end).

Следует отметить, что, независимо от используемой синтаксической конструкции, для осуществления такого выбора каждый модуль-клиент должен знать полный список вариантов представления для публикации, поддерживаемых модулем A. Последствия этого нетрудно предвидеть. Наступит момент, когда потребуется новый вариант, например технические отчеты фирм и университетов. Тогда необходимо расширить определение типа PUBLICATION в модуле A, учитывающее новый случай. Это вполне логично и неизбежно: если было изменено определение понятия публикации, то следует обновить и соответствующее объявление типа. Однако значительно труднее найти оправдание другому следствию: любой клиент модуля A, такой как B, также будет требовать обновления, если в нем использовалась рассмотренная выше структура, основанная на полном списке случаев для p. А это, очевидно, будет иметь место для большинства клиентов.

Итак, наблюдаются очень опасные изменения в программе: простое и естественное дополнение может вызвать цепную реакцию изменений во многих модулях-клиентах.

Эта проблема возникнет всякий раз, когда некоторое понятие допускает множество вариантов. Здесь таким понятием было "публикация" ("publication"), а его начальными вариантами были: книга (book), журнальная статья (journal article), труды конференции (conference proceedings); другими типичными примерами могут быть:

[x]. В системе работы с графикой: понятие фигуры (figure), с такими вариантами как многоугольник (polygon), окружность (circle), эллипс (ellipse), отрезок (segment) и другие основные виды фигур.

[x]. В текстовом редакторе: понятие команды пользователя (user command), с такими вариантами как вставка строки (line insertion), удаление строки (line deletion), удаление символа (character deletion), глобальная замена (global replacement) одного слова другим.

[x]. В компиляторе для языка программирования: понятие языковой конструкции (language construct), с такими вариантами как команда (instruction), выражение (expression), процедура (procedure).

В любом таком случае необходимо допускать возможность того, что список вариантов, заданных и известных на некотором этапе разработки программы, может в последующем быть изменен путем добавления или удаления вариантов. Чтобы обеспечить реализацию такого подхода к процессу разработки программного обеспечения, нужно найти способ защитить структуру программы от воздействия подобных изменений. Отсюда следует принцип Единственного Выбора:

Принцип Единственного Выбора

Всякий раз, когда система программного обеспечения должна поддерживать множество альтернатив, их полный список должен быть известен только одному модулю системы.

Требование того, чтобы список выбора был известен лишь одному модулю, обеспечивает подготовку к последующим изменениям: при добавлении вариантов понадобится произвести обновление только того модуля, в котором содержится эта информация - такова сущность единственного выбора. А все остальные модули, в частности - его клиенты, смогут продолжать свою работу как обычно.

Таким образом, как показывает пример с библиотекой публикаций, традиционные методы не обеспечивают решения проблемы, в то время как объектные технологии позволят получить ее решение благодаря двум методическим приемам, связанным с наследованием: полиморфизмом (polymorphism) и динамическим связыванием (dynamic binding). Однако приведенного здесь предварительного обсуждения недостаточно; эти методические приемы можно будет понять лишь в контексте всего метода наследования. (См. "Динамическое связывание" лекция 4)

Принцип Единственного Выбора нуждается еще в нескольких комментариях:

[x]. В соответствии с этим принципом, список возможных выборов должен быть известен одному и только одному модулю. Из целей модульного программирования следует, что желательно иметь не более чем один модуль, располагающий этой информацией; но очевидно также, что ею должен обладать хотя бы один модуль. Невозможно составить программу текстового редактора, если по крайней мере один из компонентов не будет иметь списка всех поддерживаемых этой программой команд, для графической программы - списка всех типов фигур, для компилятора - списка всех языковых конструкций.

[x]. Подобно другим правилам и принципам, обсужденным в этой лекции, принцип Единственного Выбора касается распределения знаний (distribution of knowledge) в системе ПО. Этот вопрос является действительно решающим при поиске расширяемых, многократно используемых программных средств. Чтобы получить цельную, надежную архитектуру ПО, следует предпринять строго обдуманные шаги по ограничению объема информации, доступной каждому модулю. По аналогии с методами, используемыми некоторыми общественными организациями, можно назвать это принципом необходимого знания (need-to-know): запретить каждому модулю доступ к любой информации, которая не является безусловно необходимой для его надлежащего функционирования.

[x]. Можно рассматривать принцип Единственного Выбора как прямое следствие принципа Открыт-Закрыт. Обсудим пример с библиотекой публикаций в свете рисунка, иллюстрирующего необходимость в открытых и закрытых модулях: A это модуль, содержащий первоначальное описание типа PUBLICATION; клиенты B, C это модули, зависящие от исходного списка вариантов; A' это усовершенствованная версия A, предлагающая дополнительный вариант - технические отчеты (technical reports). (См. второй рисунок в разделе "Открыт-Закрыт")

[x]. Можно также понимать этот принцип как сильную форму принципа Скрытия Информации. Разработчик модулей-поставщиков, таких как A и A', стремится скрыть информацию (относительно точного списка вариантов для некоторого понятия) от модулей-клиентов.

Оглавление книги


Генерация: 4.254. Запросов К БД/Cache: 2 / 0
поделиться
Вверх Вниз