Книга: Вычислительное мышление: Метод решения сложных задач
Срез жизни
Разделы на этой странице:
Срез жизни
Морской бой, «Битлз» и части тела
В предыдущей главе мы предположили, что будет играть важную роль в медицине будущего. В этой главе мы рассмотрим некоторые способы, с помощью которых компьютеры, а значит, и вычислительное мышление уже помогают спасать жизнь. В следующий раз, когда будете навещать кого-то в больнице или окажетесь там в качестве пациента, посмотрите вокруг. Палата и вся больница битком набиты продуктами вычислительного мышления. Работа целых отделений в больницах зависит от обработки компьютерами ваших данных. Компьютерная томография, ультразвук, кардиостимуляторы... в сегодняшнем здравоохранении очень многое существует только благодаря алгоритмам, сенсорам и компьютерным устройствам. И ведь кто-то должен был написать все эти программы, чтобы приборы работали.
Задавались ли вы когда-нибудь вопросом, каким образом врачи получают изображения тела в разрезе? Возможность увидеть, как разные части организма выглядят в поперечном сечении, — важный инструмент диагностики. Но нельзя разрезать человека просто, чтобы заглянуть в него, — нужна технология, позволяющая увидеть, что внутри. История о том, как этот прорыв, за который дали Нобелевскую премию, стал медицинской реальностью, связана с талантливым применением заново открытой математики, компьютерами и рок-группой 1960-х гг.!
Я и моя рентгеновская тень
Рентгеновские снимки — это просто фотографии объектов в рентгеновском излучении, а не в видимом свете. Поскольку рентгеновское излучение проникает сквозь мягкие ткани, но не проходит через более плотные материалы, такие как кости и внутренние органы, с его помощью получают изображение того, что находится внутри тела. Чтобы сделать обычный рентгеновский снимок, вас ставят перед фотографической пластинкой и просвечивают рентгеновскими лучами. В результате на фотопластине получается изображение. Кости, в которых много кальция, обладают более высокой плотностью, чем окружающие ткани, и поэтому поглощают рентгеновские лучи. В результате мы получаем «тень» костей на фотографической пластинке. Хотя этот метод очень полезен, он позволяет понять лишь, сколько костной ткани попалось на пути рентгеновского луча. Как именно кости располагаются в поперечном сечении, непонятно. Тень плоская, а тело объемное.
Цифровые тени
Цифровые рентгеновские изображения в принципе делаются так же. Снимок получают с помощью множества цифровых сенсоров без фотографической (химической) пластины. Даже цифровые рентгеновские аппараты могут давать только плоские изображения внутренних органов. Они сплющивают изображение, лишая его глубины, и оно становится похоже на тень. Однако внутренности трехмерны, поэтому определенно было бы полезно послойно нарезать тело и получить правильное объемное изображение. Это можно сделать с помощью метода компьютерной томографии (от греческого — «сечение» и — «писать»). Здесь используются те же рентгеновские лучи, но в томографии источник рентгеновского излучения и детектор вращаются вокруг тела и делают много изображений под разными углами. Это похоже на то, как если бы тело отбрасывало разной формы тени по мере движения солнца вокруг вас. Представьте, что вы исследуете цилиндр с помощью томографии, а источник рентгеновского излучения — факел. Перемещайте факел вокруг цилиндра и смотрите на тень, которая появляется на листе бумаги, находящемся на противоположной от факела стороне. Картинка тени в каждый момент будет одна и та же, потому что цилиндр кругообразно симметричен. Теперь представьте более интересную форму — скажем, чайник. Картинка тени в разные моменты будет зависеть от вашего местоположения относительно предмета. С помощью хитрой математики, алгоритма реконструкции и компьютера вы можете воссоздать форму предмета по изображениям тени.
В томографии это будет форма внутренних органов тела, изображения которых можно записать во всем их трехмерном великолепии. Сейчас существуют системы, в которых излучатель вращается вокруг тела по спирали, что ускоряет процесс. Можно даже снять в разрезе бьющееся сердце и оценить его работу. Математическое основание этой технологии называется по имени чешского математика Иоганна Радона, который умер в 1956 г. Оно было разработано как абстрактная математическая теория. В то время никто не видел для нее применения!
- Раздел VII Левиафан в Сети: защита права на тайну частной жизни после событий 2013 г.
- Выбор спутника жизни
- Возникновение жизни
- Ну и в чем же смысл жизни?
- Два метода рекламы. И жизни
- Один день из жизни
- Стиль жизни
- 1.7. ОПИСАНИЕ ЦИКЛА ЖИЗНИ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
- Неслучайные связи. Нетворкинг как образ жизни
- Области памяти в реальной жизни
- 1. Короткое вступление. Немного о жизни
- Приложение Правила жизни Стива Джобса