Книга: Вычислительное мышление: Метод решения сложных задач
Улучшаем метод
Разделы на этой странице:
Улучшаем метод
Что дальше?
Мы могли бы немного ускорить процесс общения для пациента с синдромом «запертого человека», осознав, что порой уже на половине слова можно догадаться, что имеется в виду. Например, если у вас получилось «а-н-т-и-л», с большой долей вероятности можно утверждать, что нужное слово – «антилопа». Значит, поменяем правила так, чтобы помощница высказывала подобные догадки. Кроме того, надо найти способ сказать «нет», если догадка не верна. Например, такое правило: моргнуть, если слово угадано, и не моргать – если нет. Именно по этому принципу работает функция предиктивного ввода текста в телефоне, то есть используется алгоритм для решения очень похожей задачи. То же самое делают поисковые движки, когда вы набираете свой запрос.
Помощники Боби действительно использовали вариант предсказания текста, что и описано в его книге. Он также отмечает, что его очень раздражало, если люди пытались угадать его мысли, не условившись с ним о способе подтверждения. Отсутствие навыков вычислительного мышления у собеседников Боби приводило к тому, что он очень расстраивался, пытаясь «сказать» им, что они ошиблись, а собеседники были уверены, что догадались правильно. Представим, например, что мы продолжаем разговор о животных и я передал буквы «б-а-р-с». Какова будет ваша догадка? Что слово уже закончилось и это слово – «барс»? Нет. Я хотел сказать «барсук».
Возможно, вам тоже пришла идея об угадывании целого слова, ведь вы пользовались предиктивным вводом текста в телефоне. Если так, это значит, что вы только что использовали еще один навык вычислительного мышления – сопоставление с образцом. Часто задачи, в сущности, повторяют то, что вы уже видели в другой ситуации. Если у вас уже есть решение для определенной проблемы, то есть смысл использовать его повторно. Сопоставление с образцом – навык, который позволяет понять, что новая ситуация по сути повторяет уже известную вам, и увидеть, что можно использовать старое решение.
Алгоритмы обеспечивают такого рода общее решение. Мы можем повторно использовать технологию предиктивного ввода текста, потому что у телефона и помощницы Боби одна и та же проблема. Телефон должен догадаться, какие слова набирает по буквам пользователь, а помощница – какое слово передает по буквам пациент с синдромом «запертого человека». Как только мы осознали это сходство, любое решение, найденное для первого случая, реально использовать для второго. Еще лучше, если мы увидим, что обладаем решением, которое подходит для множества разных задач, сделаем описание алгоритма с самого начала и будем использовать его при необходимости. Это называется обобщением алгоритма. Обобщение – очень мощный метод вычислительного мышления.
В самом широком смысле можно считать, что в случае Боби мы занимаемся передачей информации. В любой ситуации, когда есть необходимость передать информацию, используется общий алгоритм. Программисты создают коллекции алгоритмов для разного рода задач, чтобы при необходимости выбрать наиболее подходящий. Например, азбука Морзе тоже алгоритм передачи информации. Используя разную последовательность точек и тире (в нашем случае – долгое или быстрое моргание), обозначают разные буквы. Этот алгоритм изобрели, чтобы передавать сообщения по телеграфу, но, вероятно, получится использовать его и здесь. Мы еще вернемся к этой идее.
В еще более широком смысле мы вправе представить нашу задачу как поиск очередной доли информации (следующая буква). И видимо, мы сумеем обобщить наш алгоритм настолько, что он позволит искать что угодно. Ниже мы вернемся и к этой идее.
В порядке популярности
Боби предложил другой способ улучшить алгоритм АВС. До того, как оказаться на больничной койке, он был главным редактором французского женского журнала Elle и имел хорошее представление о языке. Например, ему было известно, что E – самая распространенная буква (в английском и французском). Поэтому Боби попросил, чтобы буквы зачитывали в порядке их популярности – то есть частотности. В английском этот порядок таков: E, Т, А, О… Во французском, на котором говорил Боби, это Е, S, А, R… Боби, соответственно, использовал французский порядок. Таким образом, помощница быстрее доходила до распространенных букв.
Похожий трюк использовался веками, чтобы расшифровать секретные коды. Он называется частотный анализ. Алгоритм для использования частотности букв был изобретен арабскими учеными около 1000 лет назад. Марию Стюарт обезглавили, потому что сэр Фрэнсис Уолсингем, начальник разведки королевы Елизаветы I, лучше нее владел вычислительным мышлением. Но это уже другая история. Идея Боби использовать частотный анализ – это пример и сопоставления с образцом, и обобщения. Задачи трансформируются, и решения для них используются повторно. Осознав, что расшифровывание кодов и угадывание букв – процессы схожие, мы видим, что частотный анализ, изобретенный для одного, пригоден для другого.
- Сидром «запертого человека»
- Просто как A, B, C
- Как это сделал Боби?
- Проверяем детали
- Улучшаем метод
- Насколько это быстро?
- 20 вопросов?
- Насколько это эффективно?
- Новый алгоритм
- Коды для букв
- Выбираем лучшее решение
- Делаем жизнь Боби лучше
- Главное — алгоритмическое мышление
- Еще важнее — понять человека
- Ему подошло
- Глава 4 Улучшаем элементы управления
- Глава 11. Улучшаем umot, чтобы оптимизировать ZMOT
- Раздел III. Улучшаем процессы и внедряем в жизнь
- Улучшаем процессы и внедряем их в жизнь. Итоги
- Делай новое! Улучшаем бизнес с помощью маркетинга
- Глава 3 Элементы управления
- Программирование КПК и смартфонов на .NET Compact Framework