Книга: Базы данных: конспект лекций
4. Свойства унарных операций
4. Свойства унарных операций
У унарных операций, как и у любых других, есть определенные свойства. Рассмотрим наиболее важные из них.
Первым свойством унарных операций выборки, проекции и переименования является свойство, характеризующее соотношение мощностей отношений. (Напомним, что мощность – это количество кортежей в том или ином отношении.) Понятно, что здесь рассматривается соответственно отношение исходное и отношение, полученное в результате применения той или иной операции.
Заметим, что все свойства унарных операций следуют непосредственно из их определений, поэтому их можно легко объяснить и даже при желании вывести самостоятельно.
Итак:
1) соотношение мощностей:
а) для операции выборки: | ?<P>r |? |r|;
б) для операции проекции: | r[S'] | ? |r|;
в) для операции переименования: | ?<?>r | = |r|;
Итого, мы видим, что для двух операторов, а именно для оператора выборки и оператора проекции, мощность исходных отношений – операндов больше, чем мощность отношений, получаемых из исходных применением соответствующих операций. Это происходит потому, что при выборе, сопутствующему действию этих двух операций выборки и проекции, происходит исключение некоторых строк или столбцов, не удовлетворивших условиям выбора. В том случае, когда условиям удовлетворяют все строки или столбцы, уменьшения мощности (т. е. количества кортежей) не происходит, поэтому в формулах неравенство нестрогое.
В случае же операции переименования, мощность отношения не изменяется, за счет того, что при смене имен никакие кортежи из отношения не исключаются;
2) свойство идемпотентности:
а) для операции выборки: ?<P> ?<P>r = ?<P>;
б) для операции проекции: r [S’] [S’] = r [S'];
в) для операции переименования в общем случае свойство идемпотентности неприменимо.
Это свойство означает, что двойное последовательное применение одного и того же оператора к какому-либо отношению равносильно его однократному применению.
Для операции переименования атрибутов отношения, вообще говоря, это свойство может быть применено, но обязательно со специальными оговорками и условиями.
Свойство идемпотентности очень часто используется для упрощения вида выражения и приведения его к более экономичному, актуальному виду.
И последнее свойство, которое мы рассмотрим, – это свойство монотонности. Интересно заметить, что при любых условиях все три оператора монотонны;
3) свойство монотонности:
а) для операции выборки: r1? r2 ? ?<P> r1? ? <P>r2;
б) для операции проекции: r1? r2? r1[S'] ? r2 [S'];
в) для операции переименования: r1? r2? ?<?>r1 ? ? <?>r2;
Понятие монотонности в реляционной алгебре аналогично этому же понятию из алгебры обычной, общей. Поясним: если изначально отношения r1 и r2 были связаны между собой таким образом, что r ? r2, то и после применения любого их трех операторов выборки, проекции или переименования это соотношение сохранится.
- Свойства (Properties)
- 7.11. Синхронное выполнение задач с помощью операций
- 7.12. Асинхронное выполнение задач с помощью операций
- Рис. 41. Свойства экрана.
- Рис. 145. Свойства абзаца.
- Перегрузка бинарных операций
- Перегрузка унарных операций
- Старшинство операций
- Директивы, атрибуты и коды операций CIL
- 11.2. СВОЙСТВА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ
- 3. Свойства бинарных операций
- 4. Варианты операций соединения