Книга: Системное программирование в среде Windows
Состояния потоков
Состояния потоков
На рис. 7.4, взятом из [9] (см. также [38], версию, обновленную Соломоном (Solomon) и Руссиновичем (Russinovych)), представлена схема планирования потоков и показаны их возможные состояния. Кроме того, этот рисунок иллюстрирует результаты работы программы. Такие диаграммы состояния являются общими для всех многозадачных ОС и помогают выяснить, каким образом планируется выполнение потоков и как они переходят из одного состояния в другое.
Рис. 7.4. Состояния потоков и переходы между состояниями (Источник: Inside Windows NT, Copyright © 1993, by Helen Custer. Copyright Microsoft Press. Воспроизводится с разрешения Microsoft Press. Все права сохранены.)
Ниже приводится краткая сводка основных положений. Для получения более подробной информации по этому вопросу обратитесь в [38] или к руководству по ОС.
• Поток находится в состоянии выполнения (running state), если она фактически выполняется процессором. В SMP-системах в состоянии выполнения могут находиться одновременно несколько потоков.
• Планировщик переводит поток в состояние ожидания (wait state), если он выполняет функцию ожидания несигнализирующих объектов, например, потоков или процессов, или перехода в сигнальное состояние объектов синхронизации, о чем говорится в главе 8. Операции ввода/вывода также будут ожидать завершения передачи дисковых или иных данных, но ожидание может быть вызвано и другими многочисленными функциями. О потоках, находящихся в состоянии ожидания, нередко говорят как о блокированных (blocked) или спящих (sleeping).
• Поток находится в состоянии готовности (ready state), если она может выполняться. Планировщик в любой момент может перевести такой поток в состояние выполнения. Когда процессор станет доступным, планировщик запустит тот из потоков, находящихся в состоянии готовности, который обладает наивысшим приоритетом, а при наличии нескольких потоков с одинаковым высшим приоритетом запущен будет та, который пребывал в состоянии готовности дольше всех. При этом поток проходит через состояние простоя (standby state), или резервное состояние.
• Обычно, в соответствии с приведенным описанием, планировщик помещает поток, находящийся в состоянии готовности, на любой доступный процессор. Программист может указать маску родства процессоров (processor affinity mask) для потока (см. главу 9), предоставляя потоку процессоры, на которых он может выполняться. Используя этот способ, программист может распределять процессоры между потоками. Соответствующими функциями являются SetProcessorAffinityMask и GetProcessorAffinityMask. Функция SetThreadIdealProcessor позволяет указать предпочтительный процессор, подлежащий использованию планировщиком при первой же возможности.
• После истечения кванта времени, отведенного выполняющемуся потоку, планировщик без ожидания переводит его в состояние готовности. В результате выполнения функции Sleep(0) поток также будет переведен из состояния выполнения в состояние готовности.
• Планировщик переводит ожидающий поток в состояние готовности сразу же, как только соответствующие дескрипторы оказываются в сигнальном состоянии, хотя при этом поток фактически проходит через промежуточное переходное состояние (transition state). В подобных случаях принято говорить о том, что поток пробуждается (wakes).
• Не существует способа, позволяющего программе определить состояние другого потока (разумеется, если поток выполняется, то он находится в состоянии выполнения, и поэтому ему нет никакого смысла определять свое состояние). Даже если бы такой способ и существовал, то состояние потока может измениться еще до того, как опрашивающий поток успеет предпринять какие-либо действия в ответ на полученную информацию.
• Поток, независимо от его состояния, может быть приостановлен (suspended), и приостановленный поток не будет запущен, даже если он находится в состоянии готовности. В случае приостановки выполняющегося потока, независимо от того, по собственной ли инициативе или по инициативе потока, выполняющегося на другом процессоре, он переводится в состояние готовности.
• Поток переходит в состояние завершения (terminated state) тогда, когда его выполнение завершается, и остается в этом состоянии до тех пор, пока остается открытым хотя бы один из ее дескрипторов. Это позволяет другим потокам запрашивать состояние данного потока и его код завершения.
- Обзор потоков
- Основные сведения о потоках
- Управление потоками
- Использование библиотеки С впотоках
- Пример: многопоточный поиск контекста
- Потоки и производительность
- Модель "хозяин/рабочий" и другие модели многопоточных приложений
- Пример: применение принципа "разделяй и властвуй" для решения задачи сортировки слиянием в SMP-системах
- Производительность
- Локальные области хранения потоков
- Приоритеты процессов и потоков и планирование выполнения
- Состояния потоков
- Возможные ловушки и распространенные ошибки
- Ожидание в течение конечного интервала времени
- Облегченные потоки
- Резюме
- Упражнения
- Достоинства и недостатки потоков
- 4.3 Потоковый редактор sed
- Множество потоков, соревнующихся между собой за обладание единственным ресурсом
- Совет 12. Разумно оценивайте потоковую безопасность контейнеров STL
- Необходимость в синхронизации потоков
- 26.5. Собственные данные потоков
- Объекты синхронизации потоков
- Реализация потоков в ядре Linux
- Приоритеты потоков
- Предотвращение перегруженности: для чего нужны несколько потоков
- Запуск дочерних консольных приложений и команд DOS, использование их входных и выходных потоков
- ГЛАВА 8 Синхронизация потоков