Книга: Аппаратные интерфейсы ПК. Энциклопедия

12.5.2. Проблемы страничной переадресации

12.5.2. Проблемы страничной переадресации

В реальном режиме (при отключенной страничной переадресации) логический адрес, формируемый прикладной программой, совпадает с физическим адресом, фигурирующим на шинах расширения. Тут все просто, правда, в стандартном (а не большом) реальном режиме доступен только первый мегабайт адресов (только устройства в области UMA).

В защищенном режиме в принципе доступно все физическое адресное пространство, но появляются проблемы, связанные с отображением логических адресов на физические. Отображением (поддержкой таблиц переадресации) ведает ОС, приложения могут только узнать карту отображений (получить список физических адресов страниц для какой-то области своей виртуальной памяти). Какие-то области могут в данный момент и не присутствовать в ОЗУ (они могут быть выгруженными на диск). У драйверов устройств возможностей больше — они могут запросить блок памяти с последовательными физическими страницами и потребовать фиксации определенных страниц (запретить их выгрузку из ОЗУ).

При организации прямого доступа к памяти, как по стандартным каналам DMA, так и используя ведущие устройства шин ISA и PCI, возникает проблема пересечения границ страниц. Если приложение хочет выполнить обмен по DMA с областью доступной ей памяти непосредственно, то оно должно запросить у ОС физический адрес, которому соответствует логический адрес предполагаемого буфера обмена. Именно этот физический адрес должен задаваться устройству, выполняющему DMA, при инициализации сеанса обмена (указании начального адреса, длины блока и запуске канала). В каждом сеансе обмена не должна пересекаться граница страницы, которой оперирует блок страничной переадресации, поскольку следующая логическая страница может иметь физическое отображение в произвольном (относительно предыдущей страницы) месте. Чаще всего ОС оперирует страницами по 4 Кбайт, при этом пересылка больших блоков данных ведется «короткими перебежками», между которыми процессор должен выполнять повторную инициализацию DMA. Эта проблема решается усложнением контроллеров DMA — применением «разбросанной записи» в память (scatter write) и «собирающего чтения» памяти (gather read). Контроллеру DMA задается список описателей блоков (начальный адрес и длина). Отработав очередной блок памяти, контроллер переходит к следующему, и так до конца списка. Такие возможности имеет, например, стандартный контроллер PCI IDE (см. п. 9.2.1). Стандартный контроллер DMA имеет и другую «страничную проблему», связанную с реализацией регистров страниц (см. п. 12.4).

Проблема пересечения границ может решаться и иначе, без усложнения контроллера DMA. Для этого в памяти резервируется буфер значительного размера, отображенный на непрерывную область физической памяти, и обмен данными физическое устройство выполняет только с этим буфером. Однако такой буфер рядовое приложение создать не может; он может быть организован лишь драйвером устройства. Приложения могут только получать указатели на этот буфер и обмениваться с ним данными. Таким образом, по пути от приложения к устройству появляется дополнительная «перевалочная база» (буфер драйвера) и дополнительная пересылка данных, что приводит к дополнительным затратам времени.

Оглавление книги


Генерация: 1.802. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз