Книга: Схемотехника аналоговых электронных устройств

7.2. Усилители диапазона СВЧ

7.2. Усилители диапазона СВЧ[1]

В настоящее время разработаны и успешно эксплуатируются различные системы передачи информации СВЧ диапазона: радиорелейные линии, системы космической связи "Орбита", "Экран", "Москва" и т.п., системы непосредственного телевещания диапазона 12ГГц, системы космической навигации, службы погоды и т.д.

Важными компонентами этих систем являются широкополосные усилители (ШУ), работающие в качестве предварительных усилителей, усилителей промежуточных частот (ПЧ), видеоусилителей и т.д.

Как правило, подобные усилители работают в согласованном тракте передачи с характеристическим сопротивлением 50 и 75 Ом. Тракт передачи может быть реализован в виде волновода, коаксиального кабеля, микрополосковой линии и т.п.

В качестве активных элементов в ШУ наиболее часто используют биполярные СВЧ транзисторы и полевые транзисторы с барьером Шоттки. БТ используют в диапазоне частот до 2 ГГц, ПТ с барьером Шоттки — до 100ГГц.

Транзисторные усилители СВЧ могут выполняться по схемам каскадных усилителей, усилителей распределенного усиления, каскадно-распределенных и балансных.

В каскадных усилителях наиболее часто используют каскады с ОЭ (ОИ), реже с ОБ (ОЗ) из-за проблемы согласования с характеристическим сопротивлением тракта в широком частотном диапазоне. Поскольку коэффициент усиления транзистора с ростом частоты уменьшается, то расчет ШУ и согласование нагрузок проводят для верхней частоты рабочего диапазона. Избыточное усиление в области НЧ и СЧ устраняют так называемыми выравнивающими цепями, которые могут быть реактивными и диссипативными (с потерями).

Диссипативные выравнивающие цепи рассчитывают так, чтобы обеспечить требуемый KP, хорошее согласование с характеристическим сопротивлением тракта передачи (малый КСВН) и устойчивость в диапазоне рабочих частот. В дециметровом диапазоне рабочих частот выравнивающие цепи могут быть реализованы в виде цепей с сосредоточенными параметрами, на более высокочастотном — с распределенными параметрами. Примеры простейших диссипативных выравнивающих цепей приведены на рисунке 7.9, причем более сложный вариант (рисунок 7.9б) — для сверхширокополосных усилителей (fв/fн>2).


Рисунок 7.9. Простейшие диссипативные выравнивающие цепи

Задача согласования и выравнивания коэффициента передачи в диапазоне рабочих частот облегчается при использовании ООС. При резистивной ООС (рисунок 7.10а) достигается широкополосное согласование в каскаде на ПТ. В сверхширокополосных усилителях используют комбинированные резистивно-индуктивные цепи ООС (рисунок 7.10б), с помощью которых осуществляется эффективное выравнивание АЧХ.


Рисунок 7.10. ООС в СВЧ ШУ

Усилители с распределенным усилением (УРУ) (рисунок 7.11) позволяют достичь большой мощности выходного сигнала на низкоомной нагрузке за счет сложения токов транзисторов в выходной линии. Однако УРУ отличает сложная схемная реализация и низкий КПД.


Рисунок 7.11. УРУ

Каскадно-распределенные усилители (рисунок 7.12), сочетая достоинства каскадных и УРУ, позволяют получить хорошие мощностные характеристики в широкой полосе рабочих частот при относительно простой схемной реализации. Выбором Rэ1 и Rэ2 добиваются одинакового усиления по току транзисторов VT1 и VT2. Поскольку выходные токи транзисторов складываются в нагрузке, то возможно использование данного каскада на частотах, близких к fT используемых транзисторов.


Рисунок 7.12. Каскадно-распределенный усилитель

Балансные ШУ (рисунок 7.13) позволяют уменьшить паразитную обратную связь между транзисторами при их каскадировании, что позволяет увеличить устойчивый коэффициент усиления. Наличие направленных ответвителей (НО) существенно увеличивает габариты балансных усилителей.


Рисунок 7.13. Балансный усилитель

Для расчета СВЧ усилителей наиболее широко используется система S-параметров (параметров рассеяния). При этом транзистор представляют в виде четырехполюсника, нагруженного на стандартные опорные сопротивления, как правило, равные волновому сопротивлению применяемых передающих линий (рисунок 7.14).


Рисунок 7.14. Транзистор как четырёхполюсник в системе S-параметров

Выбор S-параметров обусловлен относительной простотой обеспечения режима согласования на СВЧ (по сравнению, скажем, с режимом короткого замыкания при измерении Y-параметров), и, следовательно, корректностью их экспериментального определения, а также ясным физическим смыслом, а именно:

 

  — коэффициент отражения от входа при согласованном выходе;

 

  — коэффициент отражения от выхода при согласованном входе;

 

  — коэффициент усиления в прямом направлении при согласованном выходе;

 

  — коэффициент усиления в обратном направлении при согласованном входе.

Для анализа передаточных характеристик СВЧ усилительных устройств также используют обобщенный метод узловых потенциалов, эквивалентные Y-параметры определяются через измеренные параметры рассеяния:





где ?s=(S11+1)·(S22+1)–S12S21.

Параметры рассеяния транзистора (или любого четырехполюсника) можно рассчитать по его эквивалентной схеме, используя все тот же обобщенный метод узловых потенциалов:

Sij = kij?ji/? – ?ij,

где kij — нормировочный коэффициент, равный:

1/Zг — для Sii,

1/Zн — для Sjj,

 

 для Sij и Sji;

?ij — символ Кронекера, ?ij=1, если i=j, и ?ij=0, если i?j.

Ввиду сложности эквивалентных схем усилительных элементов и наличия распределенных структур, расчет передаточных характеристик усилителей СВЧ диапазона возможен только с помощью ЭВМ. Используя современные пакеты проектирования РЭУ, базы данных элементов и готовых схемных решений, разработчики имеют возможность, не проводя дорогостоящего натурного моделирования, получить ожидаемые реальные значения передаточных характеристик. С помощью ЭВМ возможно построение оптимальной топологии подложки усилителей, что позволяет полностью автоматизировать процесс проектирования усилителей СВЧ.

В настоящее время транзисторные СВЧ усилители выполняются, как правило, в гибридно-интегральном исполнении или в виде полупроводниковой интегральной микросхемы (монолитная технология) со стандартным напряжением питания. В качестве подложки при гибридном исполнении наиболее часто используются поликор, сапфир. Пассивные элементы выполняются по тонко- или толстопленочной технологии. Наилучшим материалом для выполнения контактных площадок, перемычек, выводов бескорпусных транзисторов является золото. Корпуса СВЧ усилителей выполняют из металла, имеющего одинаковый температурный коэффициент расширения с материалом подложки (например, поликор-титан). Для подключения СВЧ усилителей к тракту передачи используют СВЧ разъемы различной конструкции.

Самой современной является технология выполнения СВЧ усилителей по монолитной технологии. Этому способствовали успехи в создании высококачественного эпитаксиального арсенида галлия с высокой однородностью параметров по площади больших размеров, промышленно освоенная технология получения полевых транзисторов с длиной затвора до 0,5мкм, изучение методов расчета и исследование технологии изготовления сосредоточенных пассивных элементов в диапазоне рабочих частот до 20 ГГц, промышленное освоение технологии селективного ионного легирования арсенида галлия, создание математических моделей активных и пассивных элементов в сочетании с развитием методов машинного проектирования.

При изготовлении ИС СВЧ усилителей в большинстве случаев используется полуизолирующий арсенид галлия. Его конкурентом является сапфир, используемый в технологии "кремний на сапфире". В ИС миллиметрового диапазона волн в качестве подложки применяется чистый кремний.

При создании ИС СВЧ процессы схемотехнического проектирования, конструирования и технологии неразделимы. Технология изготовления ИС СВЧ основана на использовании уникальных свойств арсенида галлия в сочетании с методами ионной имплантации. Изолирующие свойства подложки из арсенида галлия, имеющего удельное сопротивление до 10Ом·см, дают возможность изготовить на одном кристалле арсенида галлия ИС, содержащую активные приборы, пассивные цепи СВЧ и схемы питания.

Преимуществом ШУ СВЧ, выполненных в виде монолитных ИС, являются малые габаритные размеры и масса, широкая полоса рабочих частот из-за отсутствия стыковок и паразитных реактивностей, уменьшение доли ручного труда, воспроизводство рабочих характеристик и т.д.

К недостаткам ИС СВЧ усилителей является сложность технологии изготовления, высокие затраты на разработку, низкий процент выхода годных схем, сложность с отводом тепла от активных элементов, худшие электрические параметры (без подстройки). Подстройка возможна, если в схеме и конструкции предусмотрена возможность изменения режима работы активных элементов и параметров корректирующих цепей, цепей ООС и т.д. Для ИС, выполненных по монолитной технологии, проводят разбраковку по допустимому интервалу допусков.

Оглавление книги


Генерация: 0.031. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз