Книга: Феномен науки. Кибернетический подход к эволюции
12.6. Лейтмотив новой математики
12.6. Лейтмотив новой математики
Суть того, что произошло в математике в XVII в., — овладение общим принципом использования формализованного языка, давшее начало движению вверх по лестнице, которое привело к грандиозным достижениям и продолжается до настоящего времени. Правда, тогда этот принцип не был так четко сформулирован, как это мы делаем теперь, и сам термин «формализованный язык» появился только в XX в. Но фактически он использовался. Реформа Декарта, как мы видели, была первым шагом на этом пути. Сочинения Декарта и, в частности, цитаты, приведенные выше, показывают, что этот шаг отнюдь не был случайным, а вытекал из его метода познания законов природы, который, если сформулировать его в современных терминах, и есть метод создания моделей с помощью формализованного языка. Декарт сознает общность своего метода и его «математичность». В «Правилах для руководства ума» он высказывает уверенность, что должна существовать «некая общая наука, объясняющая все, относящееся к порядку и мере, не входя в исследование никаких частных предметов». Эту науку, пишет он, следует назвать «всеобщей математикой».
Другой великий математик-философ XVII в. г. Лейбниц (1646–1716) уже полностью понимает значение формализации языка и мышления. В течение всей жизни Лейбниц разрабатывал символическое исчисление, названное им «универсальной характеристикой», целью которого было выражать все ясные человеческие мысли и сводить логические умозаключения к чисто механическим операциям. В одной из своих ранних работ он заявляет:
Истинный метод должен дать нам нить Ариадны, т. е. некое осязаемое и грубое средство, которое направило бы разум, подобно начертанным линиям в геометрии и формам операций, предписываемым обучающимся арифметики. Без этого наш разум не смог бы проделать длинный путь, не сбившись с дороги.
Это, по существу, указание на роль формализованного языка как материального фактора понятий-конструктов, т. е. на его главную роль. Н. Бурбаки в историческом очерке об основании математики пишет:
Многочисленные места из сочинений Лейбница, в которых он упоминает о своем грандиозном проекте и о прогрессе, который последует за его реализацией, показывают, с какой ясностью он понимает формализованный язык как чистую комбинацию знаков, в которых имеет значение лишь их сцепление, так что машина сможет получать все теоремы и все недоразумения смогут быть разрешены простым вычислением. Хотя подобные чаяния и могут показаться чрезмерными, все же надо признать, что, находясь именно под их постоянным воздействием, Лейбниц создал значительную часть своих математических трудов и прежде всего свои работы по символике исчисления бесконечно малых. Он сам это прекрасно сознавал и явно связывал свои идеи о введении индексов и детерминантов и свой набросок «Геометрическое исчисление» со своей «характеристикой». Но он считал, что его наиболее значительным трудом будет символическая логика... и хотя ему не удалось создать подобного исчисления, он по крайней мере трижды приступал к реализации своего намерения2.
Идеи Лейбница об «универсальной характеристике» в свое время не получили развития. Дело формализации логики сдвинулось с мертвой точки только во второй половине XIX в. Но идеи Лейбница — свидетельство того факта, что принцип описания действительности с помощью формализованного языка есть врожденная особенность европейской математики, которая всегда была источником ее развития, хотя авторами осознавалась в различной степени.
В наши цели не входит изложение истории современной математики, как и подробное описание понятий, лежащих в ее основе: для этого понадобилась бы отдельная книга. Нам придется удовлетвориться кратким очерком, затрагивающим лишь тот аспект математики, который в первую очередь интересует нас в данной книге, а именно системный аспект.
Лейтмотивом развития математики в течение последних трех столетий было постепенно углубляющееся осознание математики как формализованного языка и вытекающее отсюда возрастание ее «многоэтажности», происходящее путем метасистемных переходов различного масштаба.
В оставшейся части настоящей главы мы рассмотрим важнейшие проявления этого процесса, которые можно назвать вариациями на основную тему, исполняемыми на различных инструментах и в различном сопровождении. Одновременно с ростом здания математики ввысь происходило расширение всех его этажей, в том числе самого нижнего, т. е. сферы приложений.
- 12.1. Формализованный язык
- 12.2. Языковая машина
- 12.3. Четыре типа языковой деятельности
- 12.4. Наука и философия
- 12.5. Формализация и метасистемный переход
- 12.6. Лейтмотив новой математики
- 12.7. «Несуществующие» объекты
- 12.8. Иерархия теорий
- 12.9. Аксиоматический метод
- 12.10. Метаматематика
- 12.11. Формализация теории множеств
- 12.12. Трактат Бурбаки
- 6.3. Добавление фоновой музыки
- Отличительные особенности новой версии
- 1.1. Схема и основные этапы разработки новой продукции
- 1.2.1. Выбор вида туризма и ценовой категории будущего турпродукта
- Создание новой базы данных
- Практическая работа 59. Создание новой учетной записи и изучение действующих разграничений доступа к файлам
- 4.14.4. Модификация диаграммы IDEF3 "Сборка продукта" с целью отображения новой информации
- Основные параметры новой записи
- Предлагайте разные способы для одобрения новой идеи
- 2.18. Удаление хвостовых символов новой строки и прочих
- 9.1.4. Запуск новой программы: семейство exec()
- Ситуация 7. Установка новой версии операционной системы