Книга: Эффективное использование STL
Совет 3. Реализуйте быстрое и корректное копирование объектов в контейнерах
Совет 3. Реализуйте быстрое и корректное копирование объектов в контейнерах
В контейнерах хранятся объекты, но не те, которые вы им передаете. Более того, при получении объекта из контейнера вам предоставляется не тот объект, который находился в контейнере. При включении объекта (вызовом insert, push_back
и т. д.) в контейнер заносится копия указанного объекта. При получении объекта из контейнера (например, вызовом front
или back
) вы также получаете копию. Копирование на входе, копирование на выходе — таковы правила STL.
Но и после того, как объект окажется в контейнере, он может участвовать в операциях копирования. В результате вставки или удаления элементов в vector, string
и deque
существующие элементы контейнера обычно перемещаются (копируются) в памяти (советы 5 и 14). Алгоритмы сортировки (совет 31), next_permutation
и previous_permutation;remove
, unique
и их родичи (совет 32); rotate
и reverse
— все эти операции приводят к копированию объектов. Да, копирование объектов действительно занимает очень важное место в STL.
Возможно, вам будет интересно узнать, как же производится копирование. Очень просто — объект копируется вызовом соответствующих функций этого объекта, а точнее копирующего конструктора и копирующего оператора присваивания. В пользовательских классах эти функции обычно объявляются следующим образом:
class Widget{
public:
Widget(const Widget&):// Копирующий конструктор
Widget& operator=(const Widget&);// Копирующий оператор присваивания
…
};
Как обычно, если вы не объявите эти функции самостоятельно, компилятор сделает это за вас. Встроенные типы (int
, указатели и т. д.) копируются простым копированием их двоичного представления. Копирующие конструкторы и операторы присваивания описаны в любом учебнике по C++. В частности, эти функции рассмотрены в советах 11 и 27 книги «Effective C++».
Теперь вам должен быть ясен смысл этого совета. Если контейнер содержит объекты, копирование которых сопряжено с большими затратами, простейшее занесение объектов в контейнер может заметно повлиять на скорость работы программы. Чем больше объектов перемещается в контейнере, тем больше памяти и тактов процессора расходуется на копирование. Более того, у некоторых объектов само понятие «копирование» имеет нетрадиционный смысл, и при занесении таких объектов в контейнер неизменно возникают проблемы (пример приведен в совете 8).
В ситуациях с наследованием копирование становится причиной отсечения. Иначе говоря, если создать контейнер объектов базового класса и попытаться вставить в него объекты производного класса, «производность» этих объектов утрачивается при копировании объектов (копирующим конструктором базового класса) в контейнер:
vector<Widget> vw;
class Special Widget: // SpecialWidget наследует от класса
public Widget{...}; // Widget (см. ранее)
SpecialWidget sw; // sw копируется в vw как объект базового класса
vw.push_back(sw); // Специализация объекта теряется (отсекается)
Проблема отсечения предполагает, что вставка объекта производного класса в контейнер объектов базового класса обычно приводит к ошибке. А если вы хотите, чтобы полученный объект обладал поведением объекта производного класса (например, вызывал виртуальные функции объектов производного класса), вставка всегда приводит к ошибке. За дополнительной информацией обращайтесь к «Effective C++», совет 22. Другой пример проявления этой проблемы в STL описан в совете 38.
Существует простое решение, обеспечивающее эффективное, корректное и свободное от проблемы отсечения копирование — вместо объектов в контейнере хранятся указатели. Иначе говоря, вместо контейнера для хранения Widget
создается контейнер для Widget*
. Указатели быстро копируются, результат точно совпадает с ожидаемым (поскольку копируется базовое двоичное представление), а при копировании указателя ничего не отсекается. К сожалению, у контейнеров указателей имеются свои проблемы, обусловленные спецификой STL. Они рассматриваются в советах 7 и 33. Пытаясь справиться с этими проблемами и при этом не нажить хлопот с эффективностью, корректностью и отсечением, вы, вероятно, обнаружите симпатичную альтернативу — умные указатели. За дополнительной информацией обращайтесь к совету 7.
Если вам показалось, что STL злоупотребляет копированием, не торопитесь с выводами. Да, копирование в STL выполняется довольно часто, но в целом библиотека спроектирована с таким расчетом, чтобы избежать лишнего копирования. Более того, она избегает лишнего создания объектов. Сравните с поведением классического массива — единственного встроенного контейнера C и C++:
Widget w[maxNumWidgets]; // Создать массив объектов Widget
// Объекты инициализируются конструктором
// по умолчанию
В этом случае конструируются maxNumWidgets
объектов Widget
, даже если на практике будут использоваться лишь некоторые из них или все данные, инициализированные конструктором по умолчанию, будут немедленно перезаписаны данными, взятыми из другого источника (например, из файла). Вместо массива можно воспользоваться контейнером STL vector
и создать вектор, динамически увеличивающийся в случае необходимости:
vector<Widget> vw; // Создать вектор, не содержащий ни одного
// объекта Widget и увеличивающийся по мере
// необходимости
Можно также создать пустой вектор, в котором зарезервировано место для maxNumWidgets
объектов Widget
, но не сконструирован ни один из этих объектов:
vector<Widget> vw;
vw.reserve(maxNumWidgets); // Функция reserve описана в совете 14
По сравнению с массивами контейнеры STL ведут себя гораздо цивилизованнее. Они создают (посредством копирования) столько объектов, сколько указано, и только по вашему требованию, а конструктор по умолчанию выполняется только с вашего разрешения. Да, контейнеры STL создают копии; да, в особенностях их работы необходимо хорошо разбираться, но не стоит забывать и о том, что они означают большой шаг вперед по сравнению с массивами.
- Совет 1. Внимательно подходите к выбору контейнера
- Совет 2. Остерегайтесь иллюзий контейнерно-независимого кода
- Совет 3. Реализуйте быстрое и корректное копирование объектов в контейнерах
- Совет 4. Вызывайте empty вместо сравнения size() с нулем
- Совет 5. Используйте интервальные функции вместо одноэлементных
- Совет 6. Остерегайтесь странностей лексического разбора C++
- Совет 7. При использовании контейнеров указателей, для которых вызывался оператор new, не забудьте вызвать delete для указателей перед уничтожением контейнера
- Совет 8. Никогда не создавайте контейнеры, содержащие auto_ptr
- Совет 9. Тщательно выбирайте операцию удаления
- Совет 10. Помните о правилах и ограничениях распределителей памяти
- Совет 11. Учитывайте область применения пользовательских распределителей памяти
- Совет 12. Разумно оценивайте потоковую безопасность контейнеров STL
- Резервное копирование базы данных InterBase
- Резервное копирование многофайловых баз данных
- Резервное копирование при работе InterBase в режиме 24x7
- Иерархия объектов в InterBase
- Имена объектов длиной 68 символов
- Создание объектов Collection
- 8.2.8. Копирование хэша в массив
- 3.3. Определение объектов защиты
- Резервное копирование
- 2.3.6. Задание объектов физической памяти
- Чем отличается быстрое форматирование от обычного?
- Определение контекстно-связанных объектов