Новые книги

The VI3 product suite includes several products that make up the full feature set of enterprise virtualization. The products in the VI3 suite include:* VMware ESX Server* VMware Virtual SMP* VMware VirtualCenter* Virtual Infrastructure Client* VMware VMotion* VMware Distributed Resource Scheduler (DRS)* VMware High Availability (HA)* VMware Consolidated Backup (VCB)

Rather than wait to introduce the individual products in their own chapters, I'll introduce each product so I can refer to the products and explain how they affect each piece of the design, installation, and configuration of your virtual infrastructure. Once you understand the basic functions and features of each product in the suite, you'll have a better grasp of how that product fits into the big picture of virtualization, and you'll more clearly understand how each of the products fits into the design.
Master the fundamental concepts of real-time embedded system programming and jumpstart your embedded projects with effective design and implementation practices. This book bridges the gap between higher abstract modeling concepts and the lower-level programming aspects of embedded systems development. You gain a solid understanding of real-time embedded systems with detailed practical examples and industry wisdom on key concepts, design processes, and the available tools and methods.

Delve into the details of real-time programming so you can develop a working knowledge of the common design patterns and program structures of real-time operating systems (RTOS). The objects and services that are a part of most RTOS kernels are described and real-time system design is explored in detail. You learn how to decompose an application into units and how to combine these units with other objects and services to create standard building blocks. A rich set of ready-to-use, embedded design “building blocks” is also supplied to accelerate your development efforts and increase your productivity.

Experienced developers new to embedded systems and engineering or computer science students will both appreciate the careful balance between theory, illustrations, and practical discussions. Hard-won insights and experiences shed new light on application development, common design problems, and solutions in the embedded space. Technical managers active in software design reviews of real-time embedded systems will find this a valuable reference to the design and implementation phases.

Qing Li is a senior architect at Wind River Systems, Inc., and the lead architect of the company’s embedded IPv6 products. Qing holds four patents pending in the embedded kernel and networking protocol design areas. His 12+ years in engineering include expertise as a principal engineer designing and developing protocol stacks and embedded applications for the telecommunications and networks arena. Qing was one of a four-member Silicon Valley startup that designed and developed proprietary algorithms and applications for embedded biometric devices in the security industry.

Caroline Yao has more than 15 years of high tech experience ranging from development, project and product management, product marketing, business development, and strategic alliances. She is co-inventor of a pending patent and recently served as the director of partner solutions for Wind River Systems, Inc.

About the Authors

Одновременные события. Синхронизация

2.5.4. Одновременные события. Синхронизация

На рисунке 2.50 представлена диаграмма состояний составного объекта: он состоит из четырех параллельно и независимо работающих компонентов (состояние каждого компонента не зависит от состояний остальных компонентов). Состояние такого объекта определяется как кортеж, членами которого являются состояния каждого из составляющих объектов. Диаграмма состояний при этом распадается на четыре независимые диаграммы состояний каждого из компонентов.

В системах, состоящих из нескольких параллельно работающих объектов, иногда бывает необходимо согласовать (синхронизировать) работу двух или более объектов. Для этого тоже используются события, так как синхронизация по существу состоит в необходимости задержать переход одного из синхронизируемых объектов в очередное состояние, пока другой объект не придет в некоторое фиксированное состояние, а переходы из состояния в состояние управляются событиями. Синхронизирующее событие может вырабатываться в любом из синхронизируемых объектов, либо в каком-либо третьем объекте.

Рис. 2.50. Диаграмма состояний составного объекта (подсистемы)

Если синхронизирующее событие вырабатывается вне синхронизируемого объекта, оно может быть передано ему из другого объекта; на диаграмме это обозначается как показано на рисунке 2.51.

Рис. 2.51. Передача события из одного объекта другому

Если объект получает события из нескольких независимых объектов, то состояние, в которое он перейдет, может зависеть от порядка, в котором будут получены эти события (а этот порядок случаен, так как объекты независимы). Это называется условием конкуренции. Одной из задач проектирования является исключение нежелательных условий конкуренции. Это достигается с помощью синхронизации.

Синхронизация используется и в случае, когда в каком-либо состоянии требуется параллельно выполнить несколько активностей. В качестве примера рассмотрим устройство вывода ATM (рисунок 2.52). Оно одновременно (параллельно) выдает наличные деньги и карточку; обе эти операции можно рассматривать как составную активность, состоящую из двух параллельно работающих активностей (пунктирная линия на диаграмме состояний делит состояние на две области, в каждой из которых выполняется одна из указанных активностей). Разделение управления на два параллельных потока схематически показано в виде стрелки, которая разделяется на две: событие готов вызывает переход из состояния установка сразу в два параллельных подсостояния состояния выдача; переход в следующее состояние происходит по двум событиям деньги взяты и карточка взята; если какое-либо из этих событий произойдет раньше другого, перехода все равно не будет, пока не произойдет и второе событие (в этом и состоит синхронизация).

Рис. 2.52. Синхронизация в подсистеме

Из рассмотренного примера видно, что в различных состояниях может параллельно работать разное число процессов (активностей).

Назад | Содержание | Вперед