Книга: UNIX: разработка сетевых приложений

6.5. Пакетный ввод

6.5. Пакетный ввод

К сожалению, наша функция str_cli все еще не вполне корректна. Сначала вернемся к ее исходной версии, приведенной в листинге 5.4. Эта функция работает в режиме остановки и ожидания (stop-and-wait mode), что удобно для интерактивного использования: функция отправляет строку серверу и затем ждет его ответа. Время ожидания складывается из одного периода обращения (RTT) и времени обработки сервером (которое близко к нулю в случае простого эхо-сервера). Следовательно, мы можем предположить, сколько времени займет отражение данного числа строк, если мы знаем время обращения (RTT) между клиентом и сервером.

Измерить RTT позволяет утилита ping. Если мы измерим с ее помощью время обращения к connix.com с нашего узла solaris, то средний период RTT после 30 измерений будет равен 175 мс. В [111, с. 89] показано, что это справедливо для дейтаграммы IP длиной 84 байт. Если мы возьмем первые 2000 строк файла termcap Solaris 2.5, то итоговый размер файла будет равен 98 349 байт, то есть в среднем 49 байт на строку. Если мы добавим размеры заголовка IP (20 байт) и заголовка TCP (20 байт), то средний сегмент TCP будет составлять 89 байт, почти как размер пакета утилиты ping. Следовательно, мы можем предположить, что общее время составит около 350 с для 2000 строк (2000?0,175 с). Если мы запустим наш эхо-клиент TCP из главы 5, действительное время получится около 354 с, что очень близко к нашей оценке.

Если считать, что сеть между клиентом и сервером является двусторонним каналом, когда запросы идут от клиента серверу, а ответы в обратном направлении, то получится изображенный на рис. 6.8 режим остановки и ожидания.


Рис. 6.8. Временная диаграмма режима остановки и ожидания: интерактивный ввод

Запрос отправляется клиентом в нулевой момент времени, и мы предполагаем, что время обращения RTT равно 8 условным единицам. Ответ, отправленный в момент времени 4, доходит до клиента в момент времени 7. Мы также считаем, что время обработки сервером нулевое и что размер запроса равен размеру ответа. Мы показываем только пакеты данных между клиентом и сервером, игнорируя подтверждения TCP, которые также передаются по сети.

Но поскольку между отправкой пакета и его приходом на другой конец канала существует задержка и канал является двусторонним, в этом примере мы используем только восьмую часть вместимости канала. Режим остановки и ожидания удобен для интерактивного ввода, но поскольку наш клиент считывает данные из стандартного потока ввода и записывает в стандартный поток вывода, а перенаправление ввода и вывода выполнить в интерпретаторе команд крайне просто, мы легко можем запустить наш клиент в пакетном режиме. Однако когда мы перенаправляем ввод и вывод, получающийся файл вывода всегда меньше файла ввода (а для эхо-сервера требуется их идентичность).

Чтобы понять происходящее, обратите внимание, что в пакетном режиме мы отправляем запросы так быстро, как их может принять сеть. Сервер обрабатывает их и отправляет обратно ответы с той же скоростью. Это приводит к тому, что в момент времени 7 канал целиком заполнен, как показано на рис. 6.9.


Рис. 6.9. Заполнение канала между клиентом и сервером: пакетный режим

Предполагается, что после отправки первого запроса мы немедленно посылаем другой запрос и т.д. Также предполагается, что мы можем отправлять запросы с той скоростью, с какой сеть способна их принимать, и обрабатывать ответы так быстро, как сеть их поставляет.

ПРИМЕЧАНИЕ

Существуют различные нюансы, имеющие отношение к передаче большого количества данных TCP (bulk data flow), которые мы здесь игнорируем. К ним относятся алгоритм медленного запуска (slow start algorithm), ограничивающий скорость, с которой данные отправляются на новое или незанятое соединение, и возвращаемые сегменты ACK. Все эти вопросы рассматриваются в главе 20 [111].

Чтобы увидеть, в чем заключается проблема с нашей функцией str_cli, представленной в листинге 6.1, будем считать, что файл ввода содержит только девять строк. Последняя строка отправляется в момент времени 8, как показано на рис. 6.9. Но мы не можем закрыть соединение после записи этого запроса, поскольку в канале еще есть другие запросы и ответы. Причина возникновения проблемы кроется в нашем способе обработки конца файла при вводе, когда процесс возвращается в функцию main, которая затем завершается. Но в пакетном режиме конец файла при вводе не означает, что мы закончили читать из сокета — в нем могут оставаться запросы к серверу или ответы от сервера.

Нам нужен способ закрыть одну половину соединения TCP. Другими словами, мы хотим отправить серверу сегмент FIN, тем самым сообщая ему, что закончили отправку данных, но оставляем дескриптор сокета открытым для чтения. Это делается с помощью функции shutdown, которая описывается в следующем разделе.

Вообще говоря, буферизация ввода-вывода для повышения производительности приводит к усложнению сетевых приложений (от чего пострадала и программа в листинге 6.1). Рассмотрим пример, в котором из стандартного потока ввода считывается несколько строк текста. Функция select передаст управление строке 20, в которой функция fgets считает доступные данные в буфер библиотеки stdio. Однако эта функция возвратит приложению только одну строку, а все остальные так и останутся в буфере. Считанная строка будет отправлена серверу, после чего будет снова вызвана функция select, которая будет ждать появления новых данных в стандартном потоке ввода несмотря на наличие еще не обработанных строк в буфере stdio. Причина в том, что select ничего не знает о буферах stdio и сообщает о доступности дескриптора для чтения с точки зрения системного вызова read, а не библиотечного вызова fgets. По этой причине использование fgets и select в одной программе считается опасным и требует особой осторожности.

Та же проблема связана с вызовом readline в листинге 6.1. Теперь данные скрываются от функции select уже не в буфере stdio, а в буфере readline. Вспомните, что в разделе 3.9 мы создали функцию, проверявшую состояние буфера readline. Мы могли бы воспользоваться ею перед вызовом select, чтобы проверить, нет ли в буфере readline данных, дожидающихся обработки. Наша программа усложнится еще больше, если мы допустим, что буфер readline может содержать лишь часть строки (то есть нам придется дожидаться считывания этой строки целиком).

Проблемы буферизации мы постараемся решить в усовершенствованной версии str_cli в разделе 6.7.

Оглавление книги


Генерация: 0.157. Запросов К БД/Cache: 0 / 3
поделиться
Вверх Вниз