Книга: Большие данные. Революция, которая изменит то, как мы живем, работаем и мыслим

Задача с канализационными люками

Задача с канализационными люками

Ежегодно несколько сотен люков в Нью-Йорке начинают тлеть из-за возгорания частей канализационной инфраструктуры. От взрыва чугунные крышки люков весом до 300 фунтов взмывают на высоту в несколько этажей, а затем с грохотом падают, подвергая опасности окружающих.

Con Edison, коммунальная компания, которая занимается электроснабжением Нью-Йорка, из года в год проводит регулярные проверки и техобслуживание люков. Раньше специалисты в основном полагались на волю случая, надеясь, что взрывоопасными окажутся именно те люки, которые планируется проверить. Такой подход был едва ли полезнее, чем блуждание по Уолл-стрит. В 2007 году компания Con Edison обратилась к статистикам Колумбийского университета, расположенного на окраине города, в надежде, что статистические данные о сети (например, сведения о предыдущих неполадках и инфраструктурных соединениях) помогут спрогнозировать, какие люки вероятнее всего небезопасны, и это позволит компании целенаправленно использовать свои ресурсы.

Это сложная проблема, связанная с большими данными. Общая протяженность подземных кабелей в Нью-Йорке — 94 000 миль (достаточно, чтобы обхватить Землю 3,5 раза). В одном только Манхэттене около 51 000 люков и распределительных коробок. Часть этой инфраструктуры построена еще во времена Томаса Эдисона (тезки компании), а один из 20 кабелей заложен до 1930 года. Сохранились записи, которые велись с 1880 года, но не систематизированные, поскольку их не собирались анализировать. Данные предоставили бухгалтерия и диспетчеры аварийной службы, которые вручную писали «заявки на устранение неисправностей». Назвать их беспорядочными — ничего не сказать. К примеру, один лишь термин «распределительная коробка» (англ. service box), обозначающий обычную часть инфраструктуры, был записан в 38 вариантах, в том числе: SB, S, S/B, S.B, S?B, S.B., SBX, S/BX, SB/X, S/XB, /SBX, S.BX, S &BX, S?BX, S BX, S/B/X, S BOX, SVBX, SERV BX, SERV-BOX, SERV/BOX и SERVICE BOX. Распознать все это предстояло компьютерному алгоритму.

«Взглянув на это, мы подумали, что нам не удастся проанализировать данные, поскольку они были невероятно сырыми, — вспоминает Синтия Рудин, статистик и руководитель проекта. — У меня имелись распечатки таблиц для всех видов кабелей. Вытаскивая какие-то из них, мы не могли удержать их в руках — все тут же летело на пол. И в этом всем нужно было разобраться. Без какой-либо документации. Мне оставалось только думать, как из всего этого извлечь пользу».

Для работы Синтии Рудин и ее команде следовало использовать все данные, а не только выборку, поскольку любой из десятков тысяч люков грозил оказаться бомбой замедленного действия. Таким образом, только подход «N = всё» мог прийти на помощь. Совсем не мешало бы продумать причинно-следственные связи, но на это ушла бы сотня лет, притом что правильность и полнота результатов оставались бы сомнительными. Лучшим решением этой задачи было найти корреляции. Синтию интересовал не столько вопрос почему, сколько что, хоть она и осознавала, что, когда команде феноменальных специалистов по статистике придется отвечать перед руководством Con Edison, им придется обосновать свой рейтинг. Прогнозы выполнялись компьютерами, но их потребителем выступал человек. А людям, как правило, нужны причины, чтобы понять.

Интеллектуальный анализ данных обнаружил те самые «золотые самородки», которые Синтия Рудин надеялась найти. Очистив беспорядочные данные для обработки с помощью компьютера, команда определила 106 прогностических факторов основной аварии, связанной с канализационными люками. Затем из них отобрали несколько самых сильных сигналов. Проверяя электросеть Бронкса, специалисты проанализировали все имеющиеся данные вплоть до середины 2008 года. Затем на основе этих данных спрогнозировали проблемные участки с расчетом на 2009 год и получили блестящий результат: из 10% первых по списку люков 44% были связаны с серьезными происшествиями.

Основными факторами оказались возраст кабелей и наличие неполадок в люках в прошлом. Как ни странно, эти сведения были полезными, поскольку легко объясняли руководству Con Edison, на чем основан рейтинг. Но, помилуйте, возраст и неполадки в прошлом? Разве это не достаточно очевидно? И да и нет. С одной стороны, как любил повторять математик Дункан Уоттс (в своей книге[66]), «все очевидно, когда вы уже знаете ответ». С другой стороны, важно помнить, что модель изначально содержала 106 прогностических факторов. И не так уж очевидно, как их взвесить, а затем ранжировать десятки тысяч люков, учитывая множество переменных, связанных с каждым фактором. В итоге получаются миллионы точек данных, притом что сами данные изначально непригодны для анализа.

Этот случай наглядно демонстрирует, как данные находят новое применение для решения сложных задач реального мира. Для этого понадобилось изменить подход к работе и использовать все данные, которые удалось собрать, а не только их небольшую часть. Нужно было принять естественную беспорядочность данных, а не рассматривать точность как высший приоритет. К тому же пришлось рассчитывать на корреляции, не зная полностью причин, которые легли в основу прогнозирования.

Оглавление книги


Генерация: 1.171. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз