Книга: Интернет вещей: Будущее уже здесь

Аналитика принятия решений, основанная на использовании датчиков

Аналитика принятия решений, основанная на использовании датчиков

Интернет вещей, помимо прочего, поддерживает более широкое и сложное планирование и принятие решений. При наличии необходимой вычислительной мощности, соответствующих датчиков и достаточных объемов для хранения, сейчас можно вывести сбор и анализ данных на такой уровень, который раньше и представить себе было невозможно. Например, по мнению McKinsey & Company, обширные сети датчиков в земной коре позволили бы буровым компаниям получать гораздо больше информации. Хороший пример того, как датчики и мониторинг объектов меняют жизнь, можно увидеть в швейцарской мультинациональной нефтепромысловой компании Weatherford. С помощью радиочастотной идентификации она следит за техническим состоянием бурового оборудования и определяет, когда требуется ремонт или модернизация.

В Транспортном управлении Швеции (Trafikverket) обычный осмотр интенсивно используемых вагонов и локомотивов был заменен на отслеживание электронными системами (на протяжении 13 000 км путей). Используя радиочастотные метки и считыватели, а также сотовые и локальные сети для передачи данных к центральному устройству мониторинга, инженеры получают данные более чем из 150 промежуточных точек контроля. Когда поезда на полном ходу проносятся через эти точки, оборудование может обнаружить перегрев подшипников осей, повреждение колес, чрезмерную вибрацию и другие проблемы. «Мы выводим оборудование из эксплуатации прежде, чем произойдет серьезная поломка», – говорит менеджер проекта Леннарт Андерсон.

Совокупные данные в течение последующих 25 лет произведут переворот во всех областях. Ретейлеры используют их, чтобы понимать покупательские привычки, производители – чтобы знать о состоянии оборудования, а организации в области здравоохранения – чтобы точнее предсказывать поведение людей. Камеры, видео– и аудиоданные, информация о перемещении объектов, а также другие источники данных создадут новые и улучшенные алгоритмы, средства эмуляции и методы моделирования. Когда люди и окружающая их среда будут оснащены датчиками, правительственные организации и компании смогут преобразовывать данные, полученные с каждодневных моментальных снимков, в движущуюся картинку. Это позволит делать посекундные корректировки, доработки и изменения.

Суммарный эффект будет значителен. Аналитика принятия решений с использованием датчиков приводит к немедленной реакции на событие или ситуацию, а также дает более глубокое понимание принципов использования и потребления в реальном времени. Это, в свою очередь, дает возможность вводить схемы оплаты по факту потребления, а также модели стоимости, которая меняется в зависимости от повышения и понижения спроса и т. д. Авиалинии уже сейчас используют динамическую модель для регулирования цен в реальном времени, но современные модели бледнеют по сравнению с тем, что возможно в полностью подключенном бизнес-мире.

В ближайшем будущем множество отслеживающих устройств станут в реальном времени оценивать физическую форму, состояние здоровья и потребление пищи. Устанавливать размер страхового вознаграждения и уровни страхового покрытия можно будет на основе конкретных измерений, полученных с помощью электронных устройств, а также традиционных медицинских осмотров и лабораторных испытаний. При использовании этой модели тот, кто будет согласен добровольно предоставлять данные и вести здоровый образ жизни, сможет получать финансовые стимулы (например, его ежемесячные страховые взносы будут снижены).

Оглавление книги


Генерация: 1.281. Запросов К БД/Cache: 3 / 0
поделиться
Вверх Вниз