Книга: Code 2.0

Identity and Authentication: Real Space

Identity and Authentication: Real Space

To make sense of the technologies we use to identify who someone is, consider the relationship among three familiar ideas — (1) “identity”, (2) “authentication”, and (3) “credential.”

By “identity” I mean something more than just who you are. I mean as well your “attributes”, or more broadly, all the facts about you (or a corporation, or a thing) that are true. Your identity, in this sense, includes your name, your sex, where you live, what your education is, your driver’s license number, your social security number, your purchases on Amazon.com, whether you’re a lawyer — and so on.

These attributes are known by others when they are communicated. In real space, some are communicated automatically: for most, sex, skin color, height, age range, and whether you have a good smile get transmitted automatically. Other attributes can’t be known unless they are revealed either by you, or by someone else: your GPA in high school, your favorite color, your social security number, your last purchase on Amazon, whether you’ve passed a bar exam.

Just because an attribute has been asserted, however, does not mean the attribute is believed. ( “You passed the bar?!”) Rather belief will often depend upon a process of “authentication.” In general, we “authenticate” when we want to become more confident about the truth about some asserted claim than appears on its face. “I’m married”, you say. “Show me the ring”, she says. The first statement is an assertion about an attribute you claim you have. The second is a demand for authentication. We could imagine (in a comedy at least) that demand continuing. “Oh come on, that’s not a wedding ring. Show me your marriage license.” At some point, the demands stop, either when enough confidence has been achieved, or when the inquiry has just become too weird.

Sometimes this process of authentication is relatively automatic. Some attributes, that is, are relatively self-authenticating: You say you’re a woman; I’m likely to believe it when I see you. You say you’re a native speaker; I’m likely to believe it once I speak with you. Of course, in both cases, I could be fooled. Thus, if my life depended upon it, I might take other steps to be absolutely confident of what otherwise appears plain. But for most purposes, with most familiar sorts of attributes, we learn how to evaluate without much more than our own individual judgment.

Some attributes, however, cannot be self-authenticating. You say you’re licensed to fly an airplane; I want to see the license. You say you’re a member of the California bar; I want to see your certificate. You say you’re qualified to perform open heart surgery on my father; I want to see things that make me confident that your claim is true. Once again, these authenticating “things” could be forged, and my confidence could be unjustified. But if I’m careful to match the process for authentication with the level of confidence that I need, I’m behaving quite rationally. And most of us can usually get by without a terribly complicated process of authentication.

One important tool sometimes used in this process of authentication is a credential. By “credential”, I mean a standardized device for authenticating (to some level of confidence) an assertion made. A driver’s license is a credential in this sense. Its purpose is to authenticate the status of a driver. We’re generally familiar with the form of such licenses; that gives us some confidence that we’ll be able to determine whether a particular license is valid. A passport is also a credential in this sense. Its purpose is to establish the citizenship of the person it identifies, and it identifies a person through relatively self-authenticating attributes. Once again, we are familiar with the form of this credential, and that gives us a relatively high level of confidence about the facts asserted in that passport.

Obviously, some credentials are better than others. Some are architected to give more confidence than others; some are more efficient at delivering their confidence than others. But we select among the credentials available depending upon the level of confidence that we need.

So take an obvious example to bring these points together: Imagine you’re a bank teller. Someone appears in front of you and declares that she is the owner of account # 654 –543231. She says she would like to withdraw all the money from that account.

In the sense I’ve described, this someone (call her Ms. X) has asserted a fact about her identity — that she is the owner of account # 654–543231. Your job now is to authenticate that assertion. So you pull up on your computer the records for the account, and you discover that there’s lots of money in it. Now your desire to be confident about the authentication you make is even stronger. You ask Ms. X her name; that name matches the name on the account. That gives you some confidence. You ask Ms. X for two forms of identification. Both match to Ms. X. Now you have even more confidence. You ask Ms. X to sign a withdrawal slip. The signatures seem to match; more confidence still. Finally, you note in the record that the account was established by your manager. You ask her whether she knows Ms. X. She confirms that she does, and that the “Ms. X” standing at the counter is indeed Ms. X. Now you’re sufficiently confident to turn over the money.

Notice that throughout this process, you’ve used technologies to help you authenticate the attribute asserted by Ms. X to be true. Your computer links a name to an account number. A driver’s license or passport ties a picture to a name. The computer keeps a copy of a signature. These are all technologies to increase confidence.

And notice too that we could imagine even better technologies to increase this confidence. Credit cards, for example, were developed at a time when merely possessing the credit card authenticated its use. That design creates the incentive to steal a credit card. ATM cards are different — in addition to possession, ATM cards require a password. That design reduces the value of stolen cards. But some write their passwords on their ATM cards, or keep them in their wallets with their ATMs. This means the risk from theft is not totally removed. But that risk could be further reduced by other technologies of authentication. For example, certain biometric technologies, such as thumbprint readers or eye scans, would increase the confidence that the holder of a card was an authorized user. (Though these technologies themselves can create their own risks: At a conference I heard a vendor describing a new technology for identifying someone based upon his handprint; a participant in the conference asked whether the hand had to be alive for the authentication to work. The vendor went very pale. After a moment, he replied, “I guess not.”)

We are constantly negotiating these processes of authentication in real life, and in this process, better technologies and better credentials enable more distant authentication. In a small town, in a quieter time, credentials were not necessary. You were known by your face, and your face carried with it a reference (held in the common knowledge of the community) about your character. But as life becomes more fluid, social institutions depend upon other technologies to build confidence around important identity assertions. Credentials thus become an unavoidable tool for securing such authentication.

If technologies of authentication can be better or worse, then, obviously, many have an interest in these technologies becoming better. We each would be better off if we could more easily and confidently authenticate certain facts about us. Commerce, too, would certainly be better off with better technologies of authentication. Poor technologies begat fraud; fraud is an unproductive cost for business. If better technology could eliminate that cost, then prices could be lower and profits possibly higher.

And finally, governments benefit from better technologies of authentication. If it is simple to authenticate your age, then rules that are triggered based upon age are more easily enforced (drinking ages, or limits on cigarettes). And if it is simple to authenticate who you are, then it will be easier for the government to trace who did what.

Fundamentally, the regulability of life in real-space depends upon certain architectures of authentication. The fact that witnesses can identify who committed a crime, either because they know the person or because of self-authenticating features such as “he was a white male, six feet tall”, enhances the ability of the state to regulate against that crime. If criminals were invisible or witnesses had no memory, crime would increase. The fact that fingerprints are hard to change and are now automatically traced to convicted felons increases the likelihood that felons will be caught again. Relying on a more changeable physical characteristic would reduce the ability of the police to track repeat offenders. The fact that cars have license plates and are registered by their owners increases the likelihood that a hit-and-run driver will be caught. Without licenses, and without systems registering owners, it would be extremely difficult to track car-related crime. In all these cases, and in many more, technologies of authentication of real-space life make regulating that life possible.

These three separate interests therefore point to a common interest. That’s not to say that every technology of authentication meets that common interest, nor is it to say that these interests will be enough to facilitate more efficient authentication. But it does mean that we can see which way these interests push. Better authentication can benefit everyone.

Оглавление книги


Генерация: 0.049. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз