Новые книги

Эта книга – учебное пособие по созданию и ведению интернет-бизнеса. В ней рассказывается о том, что такое интернет-проект, какие существуют виды и структуры интернет-проектов. Вы ознакомитесь с новыми бизнес-моделями; узнаете, как выбрать нишу, которая будет востребованной и принесет прибыль; научитесь составлять структуру продающего сайта, работать с трафиком и запускать email-рассылку. Кроме того, книга подскажет, как создать команду и каким должен быть менеджер по продажам в вашем бизнесе. В конце книги вы найдете советы и рекомендации по масштабированию и автоматизации онлайн-бизнеса, которые помогут вам так организовать бизнес, чтобы он увеличивал оборот и отлично работал без вашего непосредственного участия.

Поэтому читайте и применяйте! И тогда мы скажем вам: «Добро пожаловать в ряды успешных интернет-предпринимателей!»
Важнейшее условие успеха в бизнесе – не только талант и упорный труд, но и постоянные интеллектуальные усилия. Нельзя, конечно, сбрасывать со счетов озарения, да и счастливый случай приходит на выручку, но все это случается нечасто, а вот шевелить мозгами приходится постоянно – и мелкому предпринимателю, и руководителю крупной компании.

Но шевелить мозгами – дело не простое. Часто мы только думаем, что думаем, а на самом деле принимаем произвольно возникающие в голове связи за логические, на основании неверных посылок делаем ложные заключения, а то и подгоняем факты таким образом, чтобы получить желаемый вывод. Между тем мыслительный процесс требует использования соответствующего инструментария и техник, особенно если приходится осмысливать сегодняшнюю сложную, мгновенно и непредсказуемо меняющуюся реальность.

В этой ситуации на выручку приходит системный подход, которому и посвящена книга Денниса Шервуда. Физик, биофизик, биолог и экономист по образованию, ныне он занимается консалтингом и является владельцем компании The Silver Bullet Machine Manufacturing Company Limited, специализирующейся на развитии творческого подхода и инновационного процесса в организациях.

Глава 17. DECnet




Глава 17. DECnet.

Библиографическая справка

Digital Equipment Corporation (Digital) разработала семейство протоколов DECnet с целью обеспечения своих компьютеров рациональным способом сообщения друг с другом. Выпущенная в 1975 г. первая версия DECnet обеспечивала возможность сообщения двух напрямую подключенных миникомпьютеров PDP-11. В последние годы Digital включила подддержку для непатентованных протоколов, однако DECnet попрежнему остается наиболее важным из сетевых изделий, предлагаемых Digital.

В настоящее время выпущена пятая версия основного изделия DECnet ( которую иногда называют Phase V, a в литературе компании Digital - DECnet/OSI). DECnet Phase V представляет собой надлежащим образом расширенный набор комплекта протоколов OSI, поддерживающий все протоколы OSI, а также несколько других патентованных и стандартных протоколов, которые поддерживались предыдущими версиями DECnet. Что касается ранее внесенных изменений в протокол, DECnet Phase V совместим с предыдущей версией (т.е. Phase IV).

Архитектура цифровой сети (DNA)

В противоположность бытующему мнению, DECnet вовсе не является архитектурой сети, а представляет собой ряд изделий, соответсвующих Архитектуре Цифровой сети ( Digital Network Architecture - DNA) компании Digital. Как и большинство других сложных сетевых архитектур, поставляемых крупными поставщиками систем, DNA поддерживает большой набор как патентованных, так и стандартных протоколов. Перечень технологий, которые поддерживает DNA, постоянно растет по мере того, как Digital реализует новые протоколы. Рис. 17-1 иллюстрирует неполную картину DNA и связь некоторых ее компонентов с эталонной моделью OSI.

Доступ к среде

Как видно из Рис. 17-1, DNA поддерживает различные реализации физического и канального уровней. Среди них такие известные стандарты, как Ethernet, Token Ring, Fiber Distributed Data Interface (FDDI), IEEE 802..2 и Х.25. Подробная информация об этих протоколах дается в Главе 5 "Ethernet/IEEE 802.3", Главе 6 "Token Ring/IEEE 802.5", Главе 7 "FDDI", Главе 12 "SDLC и его производные" и Главе 13 "X.25". DNA также предлагает протокол канального уровня для традиционного двухточечного соединения, который называется Digital Data Communications Message Protocol (DDCMP) (Протокол сообщений цифровой связи) и шину с пропускной способностью 70 Mb/sek , используемую для группы абонентов VAX, которая называется Computer-room Interconnect bus (CI bus) (шина межсоединений машинного зала).

Сетевой уровень

DECnet поддерживает сетевые уровни как без установления соединения, так и с установлением соединения. Оба сетевых уровня реализуются протоколами OSI. Реализации без установления соединения используют Connectionless Network Protocol (CLNP) (Протокол сети без установления соединения) и Connectionless Network Service (CLNS) (Услуги сети без установления соединения). Сетевой уровень с установлением соединения использует X.25 Packet-Level Protocol (PLP) (Протокол пакетного уровня), который также известен как X.25 level 3 (Уровень 3 Х.25), и Connection-Mode Network Protocol (CMNP) (Протокол сети с установлением соединения). Более подробно эти протоколы OSI описываются в Главе 20 "Протоколы OSI".

Хотя в DECnet Phase V значительная часть DNA была приведена в соответствие с OSI, уже в DECnet Phase IV маршрутизация была очень схожа с маршрутизацией OSI. Маршрутизация DNA Phase V включает в себя маршрутизацию OSI (ES-IS и IS-IS) и постоянную поддержку протокола маршрутизации DECnet Phase IV. ЕS-IS и IS-IS описаны в Главе 28 "Маршрутизация OSI".

Формат длока данных маршрутизации DECnet Phase IV

Протокол маршрутизации DECnet Phase IV имеет несколько отличий от IS-IS. Одно из них-это разница в заголовках протоколов. Заголовок слоя маршрутизации DNA Phase IV приведен на Рис. 17-2; форматы пакетов IS-IS даны в Главе 28 "Маршрутизация OSI".

Первое поле в заголовке маршрутизации DNA Phase IV-это поле флагов маршрутизации (routing flags), которое состоит из:

return-to-sender
бит возврата получателю, если он задан, то указывает, что данный пакет возвращается в источник.
return-to-sender request
бит запроса о возврате получателю, если он задан, то указывает на то, что запрашиваемые пакеты должны быть возвращены в источник, если они не могут быть доставлены в пункт назначения.
intraLAN
бит intraLAN, который устанавливается по умолчанию. Если роутер обнаружит, что две сообщающиеся конечные системы не принадлежат одной и той же подсети, он исключает этот бит.
другие биты, которые обозначают формат заголовка, указывают, применялась ли набивка, и выполняют другие функции.

За полем флагов маршрутизации идут поля узла пункта назначения (destination node) и узла источника (source node), которые обозначают сетевые адреса узлов пункта назначения и узла источника.

Последнее поле в заголовке маршрутизации DNA Phase IV-поле траверсированных узлов ( nodes traversed ), которое показывает число узлов, которые пересек пакет на пути к пункту назначения. Это поле обеспечивает реализацию подсчета максимального числа пересылок для того, чтобы можно было удалить из сети вышедшие из употребления пакеты.

DECnet различает два типа узлов: конечные узлы и узлы маршрутизации. Как конечные узлы, так и узлы маршрутизации могут отправлять и принимать информацию, но обеспечивать услуги маршрутизации для других узлов DECnet могут только узлы маршрутизации.

Маршрутные решения DECnet базируются на затратах (cost)-арбитражном показателе, назначаемом администратором сети для использования при сравнении различных путей через среду об'единенной сети. Затраты обычно базируются на числе пересылок, ширине полосы носителя и других показателях. Чем меньше затраты, тем лучше данный тракт. Если в сети имеют место неисправности, то протокол маршрутизации DECnet Phase IV использует значения затрат для повторного вычисления наилучшего мааршрута к каждому пункту назначения. Рис. 17-3 иллюстрирует расчет затрат в среде маршрутизации DECnet Phase IV.

Адресация

Адреса DECnet не связаны с физическими сетями, к которым подключены узлы. Вместо этого DECnet размещает главные вычислительные машины, используя пары адресов область/узел (area/node address). В диапазон значений адресов области входят значения от 1 до 63 (включительно). Адрес узла может иметь значение от 1 до 1023 (включительно). Следовательно, каждая область может иметь 1023 узла, а в сети DECnet адресация может быть произведена примерно к 65,000 узлам. Области могут перекрывать несколько роутеров, и отдельный кабель может обеспечивать несколько областей. Следовательно, если какой-нибудь узел имеет несколько сетевых интерфейсов, то он использует один и тот же адрес область/узел для каждого интерфейса. На Рис. 17-4 "Адреса DECnet" изображен пример сети DECnet с несколькими адресуемыми об'ектами.

Главные вычислительные машины DECnet не используют адреса уровня МАС (Media Access Control - Управлениe доступом к носителю), назначаемые производителем. Вместо этого адреса сетевого уровня встраиваются в адреса уровня МАС в соответствии с алгоритмом, который перемножает номер области на 1024 и прибавляет к результату номер узла. Результирующий 16-битовый десятичный адрес преобразуется в шестнадцатеричное число и добавляется к адресу АА00.0400 таким образом, что байты оказываются переставленными, так что наименее значимый байт оказывается первым. Например, адрес 12.75 DECnet становится числом 12363 (основание 10), которое равняется числу 304В (основание 16). После этого адрес с переставленными байтами добавляется к ставндартному префиксу адреса МАС DECnet; результирующим адресом является выражение АА00.0400.4В30.

Уровни маршрутизации

Узлы маршрутизации DECnet называются либо роутерами Уровня 1, либо роутерами Уровня 2. Роутер Уровня 1 сообщается с конечными узлами и с другими роутерами Уровня 1 в отдельной конкретной области. Роутеры Уровня 2 сообщаются с роутерами Уровня 1 той же самой области и роутерами Уровня 2 других областей. Таким образом, роутеры Уровня 1 и Уровня 2 вместе формируют иерархическую схему маршрутизации. Рассмотренные взаимоотношения иллюстрируются на Рис. 17-5.

Конечные системы отправляют запросы о маршрутах в назначенный роутер Уровня 1. На роль назначенного роутера выбирается роутер Уровня 1 с наивысшим приоритетом. Если два роутера имеют одинаковый приоритет, то назначенным роутером становится тот, который имеет большее число узлов. Конфигурацию приоритета любого роутера можно вибирать ручным способом, вынуждая его на роль назначенного роутера.

Как показано на Рис.17-5, в любой области может быть несколько роутеров Уровня 2. Если роутеру Уровня 1 необходимо отправить пакет за пределы своей области, он направляет этот пакет какому-нибудь роутеру Уровня 2 в этой же области. В некоторых случаях этот роутер Уровня 2 может не иметь оптимального маршрута к пункту назначения, однако конфигурация узловой сети обеспечивает такую степень устойчивости к ошибкам, которая не может быть обеспечена при назначении только одного роутера Уровня 2 на область.

Транспортный уровень

Транспортный уровень DNA реализуется различными протоколами транспортного уровня, как патентованными, так и стандартными. Поддерживаются следующие протоколы транспортного уровня OSI: ТР0, ТР2 и ТР4. Подробное описание этих протоколов дается в Главе 20 "Протоколы OSI".

Принадлежащий Digital Протокол услуг сети ( Network services protocol - NSP) по функциональным возможностям похож на ТР4 тем, что он обеспечивает ориентированное на соединение, с контролируемым потоком обслуживание, с фрагментацией и повторной сборкой сообщений . Обеспечиваются два подканала - один для нормальных данных, второй для срочных данных и информации управления потоком. Обеспечивается два типа управления потоком - простой механизм старт/стоп, при котором получатель сообщает отправителю, когда следует завершать и возобновлять передачу данных, и более сложная техника управления потоком, при которой получатель сообщает отправителю, сколько сообщений он может принять. NSP может также реагировать на уведомления о перегрузке, поступающие из сетевого уровня, путем уменьшения числа невыполненных сообщений, которое он может допустить.

[Назад] [Содержание] [Вперед]