Книга: Linux программирование в примерах

12.1. Операторы проверки: assert()

12.1. Операторы проверки: assert()

Оператор проверки (assertion) является утверждением, которое вы делаете о состоянии своей программы в определенный момент времени ее исполнения. Использование операторов проверок для программирования было первоначально разработано Хоаром (C.A.R. Hoare)[121]. Общая идея является частью «верификации программы»: так же, как вы проектируете и разрабатываете программу, вы можете показать, что она правильна, делая тщательно аргументированные утверждения о проявлениях кода вашей программы. Часто такие утверждения делаются об инвариантах — фактах о состоянии программы, которые, как предполагается, остаются верными на протяжении исполнения куска программы.

Операторы проверки особенно полезны для описания двух разновидностей инвариантов: предусловий и постусловий: условий, которые должны быть истинными соответственно перед и после исполнения сегмента кода. Простым примером предусловий и постусловий является линейный поиск:

/* lsearch --- возвратить индекс с данным значением в массиве или -1,
   если не найдено */
int lsearch(int *array, size_t size, int value) {
 size_t i;
 /* предусловие: array != NULL */
 /* предусловие: size > 0 */
 for (i = 0; i < size; i++)
  if (array[i] == value)
   return i;
 /* постусловие: i == size */
 return -1;
}

Этот пример определяет условия, используя комментарии. Но не было бы лучше проверить условия с использованием кода? Это является задачей макроса assert():

#include <assert.h> /* ISO С */
void assert(/* скалярное выражение */);

Когда скалярное выражение ложно, макрос assert() выводит диагностическое сообщение и завершает программу (с помощью функции abort(); см. раздел 12.4 «Совершение самоубийства: abort()»). ch12-assert.c снова предоставляет функцию lsearch(), на этот раз с оператором проверки и функцией main():

1  /* ch12-assert.с --- демонстрация операторов проверки */
2
3  #include <stdio.h>
4  #include <assert.h>
5
6  /* lsearch --- возвращает индекс с данным значением в массиве или -1, если не найдено */
7
8  int lsearch(int *array, size_t size, int value)
9  {
10  size_t i;
11

12  assert(array != NULL);
13  assert(size > 0);
14  for (i = 0; i < size; i++)
15   if (array[i] == value)
16    return i;
17
18  assert(i == size);
19
20  return -1;
21 }
22
23 /* main --- проверить наши условия */
24

25 int main(void)
26 {
27 #define NELEMS 4
28  static int array[NELEMS] = { 1, 17, 42, 91 };
29  int index;
30
31  index = lsearch(array, NELEMS, 21);
32  assert(index == -1);
33

34  index = lsearch(array, NELEMS, 17);
35  assert(index == 1);
36

37  index = lsearch(NULL, NELEMS, 10); /* won't return */
38

39  printf("index = %dn", index);
40
41  return 0;
42 }

После компиляции и запуска оператор проверки в строке 12 «выстреливает»:

$ ch12-assert /* Запуск программы */
ch12-assert: ch12-assert.c:12: lsearch: Assertion 'array != ((void *)0)' failed.
Aborted (core dumped)

Сообщение от assert() варьирует от системы к системе. Для GLIBC на GNU/Linux сообщение включает имя программы, имя файла с исходным кодом и номер строки, имя функции, а затем текст завершившегося неудачей условия. (В этом случае именованная константа NULL проявляется в виде своего макрорасширения '((void*)0)'.)

Сообщение 'Aborted (core dumped)' означает, что ch12-assert создала файл core; т.е. снимок адресного пространства процесса непосредственно перед его завершением.[122] Этот файл может быть использован впоследствии с отладчиком; см. раздел 15.3 «Основы GDB». Создание файла core является намеренным побочным результатом assert(); предполагается, что произошла решительная ошибка, и вы хотите исследовать процесс с помощью отладчика для ее определения.

Вы можете отменить оператор проверки, компилируя свою программу с помощью опции командной строки '-DNDEBUG'. Когда этот макрос определен до включения <assert.h>, макрос assert() расширяется в код, который ничего не делает. Например:

$ gcc -DNDEBUG=1 ch12-assert.c -о ch12-assert /* Компиляция с -DNDEBUG */
$ ch12-assert /* Запуск */
Segmentation fault (core dumped) /* Что случилось? */

Здесь мы получили настоящий дамп ядра! Мы знаем, что операторы проверки были запрещены; сообщения «failed assertion» нет. Что же случилось? Рассмотрите строку 15 lsearch() при вызове из строки 37 main(). В этом случае переменная array равна NULL. Доступ к памяти через указатель NULL является ошибкой. (Технически различные стандарты оставляют «неопределенным» то, что происходит при разыменовывании указателя NULL. Наиболее современные системы делают то же, что и GNU/Linux; они завершают процесс, посылая ему сигнал SIGSEGV; это, в свою очередь, создает дамп ядра. Этот процесс описан в главе 10 «Сигналы».

Этот случай поднимает важный момент относительно операторов проверки. Часто программисты ошибочно используют операторы проверки вместо проверки ошибок времени исполнения. В нашем случае тест 'array != NULL' должен был быть проверкой времени исполнения:

if (array == NULL) return -1;

Тест 'size > 0' (строка 13) менее проблематичен; если size равен 0 или меньше 0, цикл никогда не исполнится, и lsearch() (правильно) возвратит -1. (По правде, этот оператор проверки не нужен, поскольку код правильно обрабатывает случай 'size <= 0'.)

Логика, стоящая за отменой оператора проверки, заключается в том, что дополнительные проверки могут снизить производительность программы и поэтому должны быть запрещены в заключительной версии программы. Хоар[123], однако, сделал такое замечание:

«В конце концов, абсурдно делать тщательные проверки безопасности при отладочных запусках, когда к результатам нет никакого доверия, а затем удалять их из финальных версий, когда ошибочный результат может быть дорогим или катастрофическим. Что бы мы подумали об энтузиасте-мореплавателе, который надевает свой спасательный жилет при тренировке на сухой земле и снимает его, как только выходит в море?»

С такими мнениями, наша рекомендация заключается во внимательном использовании операторов проверки- во-первых, для любого данного оператора проверки рассмотрите возможность использования вместо него проверки времени исполнения. Во-вторых, тщательно разместите свой оператор проверки, чтобы не было возражений против их оставления на своем месте лаже в финальной версии вашей программы.

Наконец, отметим следующее из раздела «Ошибки» справочной страницы GNU/Linux assert(3):

assert() реализован как макрос: если у проверяемого выражения есть побочные результаты, поведение программы может меняться в зависимости от того, определен ли NDEBUG. Это может создавать гейзенберговские ошибки, которые исчезают при отключении режима отладки.

Знаменитый принцип неопределенности Гейзенберга из физики указывает, что чем более точно вы определите скорость частицы, тем менее точно вы определите ее положение, и наоборот. В терминах непрофессионала это означает что простой факт наблюдения частицы влияет на нее.

Сходное явление совершается в программировании, не связанном с физикой частиц: действие компилирования программы для отладки или запуска ее а режиме отладки может изменить поведение программы. В частности, первоначальная ошибка может исчезнуть. Такие ошибки в разговоре называют гейзенберговскими.

Справочная страница предостерегает нас от использования при вызовах assert() выражений с побочными эффектами:

assert(*p++ == 'n');

Здесь побочным эффектом является увеличение указателя p как часть теста. Когда определен NDEBUG, аргумент выражения исчезает из исходного кода; он никогда не исполняется. Это может привести к неожиданной неудаче. Однако, как только при подготовке к отладке запрет на операторы проверки отменяется, все начинает снова работать! Такие проблемы трудно отследить.

Оглавление книги


Генерация: 0.049. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз