Новые книги

В книге рассматриваются основные моменты технологии продаж рекламных услуг. Автор подробно и популярно объясняет, что и как нужно сделать рекламному агенту (менеджеру) для того, чтобы преуспеть в продажах рекламных возможностей.

Книга рассчитана на действующих на рекламном рынке агентов и менеджеров, так и на тех, кто только планирует заняться рекламными продажами. Кроме того, книга представляет интерес для студентов и преподавателей дисциплин, связанных с рекламной деятельностью.
Comprehensive Real-World Guidance for Every Embedded Developer and Engineer

This book brings together indispensable knowledge for building efficient, high-value, Linux-based embedded products: information that has never been assembled in one place before. Drawing on years of experience as an embedded Linux consultant and field application engineer, Christopher Hallinan offers solutions for the specific technical issues you're most likely to face, demonstrates how to build an effective embedded Linux environment, and shows how to use it as productively as possible.

Hallinan begins by touring a typical Linux-based embedded system, introducing key concepts and components, and calling attention to differences between Linux and traditional embedded environments. Writing from the embedded developer's viewpoint, he thoroughly addresses issues ranging from kernel building and initialization to bootloaders, device drivers to file systems.

Hallinan thoroughly covers the increasingly popular BusyBox utilities; presents a step-by-step walkthrough of porting Linux to custom boards; and introduces real-time configuration via CONFIG_RT--one of today's most exciting developments in embedded Linux. You'll find especially detailed coverage of using development tools to analyze and debug embedded systems--including the art of kernel debugging.

• Compare leading embedded Linux processors

• Understand the details of the Linux kernel initialization process

• Learn about the special role of bootloaders in embedded Linux systems, with specific emphasis on U-Boot

• Use embedded Linux file systems, including JFFS2--with detailed guidelines for building Flash-resident file system images

• Understand the Memory Technology Devices subsystem for flash (and other) memory devices

• Master gdb, KGDB, and hardware JTAG debugging

• Learn many tips and techniques for debugging within the Linux kernel

• Maximize your productivity in cross-development environments

• Prepare your entire development environment, including TFTP, DHCP, and NFS target servers

• Configure, build, and initialize BusyBox to support your unique requirements

7.8 КОМАНДНЫЙ ПРОЦЕССОР SHELL



 

7.8 КОМАНДНЫЙ ПРОЦЕССОР SHELL

Теперь у нас есть достаточно материала, чтобы перейти к объяснению принципов работы командного процессора shell. Сам командный процессор намного сложнее, чем то, что мы о нем здесь будем излагать, однако взаимодействие процессов мы уже можем рассмотреть на примере реальной программы. На Рисунке 7.28 приведен фрагмент основного цикла программы shell, демонстрирующий асинхронное выполнение процессов, переназначение вывода и использование каналов.

Shell считывает командную строку из файла стандартного ввода и интерпретирует ее в соответствии с установленным набором правил. Дескрипторы файлов стандартного ввода и стандартного вывода, используемые регистрационным shell'ом, как правило, указывают на терминал, с которого пользователь регистрируется в системе (см. главу 10). Если shell узнает во введенной строке конструкцию собственного командного языка (например, одну из команд cd, for, while и т.п.), он исполняет команду своими силами, не прибегая к созданию новых процессов; в противном случае команда интерпретируется как имя исполняемого файла.

Командные строки простейшего вида содержат имя программы и несколько параметров, например:

   who
    grep -n include *.c
    ls -l

Shell "ветвится" (fork) и порождает новый процесс, который и запускает программу, указанную пользователем в командной строке. Родительский процесс (shell) дожидается завершения потомка и повторяет цикл считывания следующей команды.

   
                      if (fork() == 0)                          
                      {                                         
                        /* первая компонента командной строки */
                        close(stdout);                          
                        dup(fildes[1]);                         
                        close(fildes[1]);                       
                        close(fildes[0]);                       
                        /* стандартный вывод направляется в ка- 
                           нал */                               
                        /* команду исполняет порожденный про-   
                           цесс */                              
                        execlp(command1,command1,0);            
                      }                                         
                      /* вторая компонента командной строки */  
                      close(stdin);                             
                      dup(fildes[0]);                           
                      close(fildes[0]);                         
                      close(fildes[1]);                         
                      /* стандартный ввод будет производиться из
                         канала */                              
                }                                               
                execve(command2,command2,0);                    
         }                                                      
         /* с этого места продолжается выполнение родительского 
          * процесса...                                         
          * процесс-родитель ждет завершения выполнения потомка,
          * если это вытекает из введенной строки               
          * /                                                   
         if (amper == 0)                                        
                retid = wait(&status);                          
     }                                                          

Рисунок 7.28. Основной цикл программы shell (продолжение)

Если процесс запускается асинхронно (на фоне основной программы), как в следующем примере

   nroff -mm bigdocument &

shell анализирует наличие символа амперсанд (&) и заносит результат проверки во внутреннюю переменную amper. В конце основного цикла shell обращается к этой переменной и, если обнаруживает в ней признак наличия символа, не выполняет функцию wait, а тут же повторяет цикл считывания следующей команды.

Из рисунка видно, что процесс-потомок по завершении функции fork получает доступ к командной строке, принятой shell'ом. Для того, чтобы переадресовать стандартный вывод в файл, как в следующем примере

   nroff -mm bigdocument > output

процесс-потомок создает файл вывода с указанным в командной строке именем; если файл не удается создать (например, не разрешен доступ к каталогу), процесс-потомок тут же завершается. В противном случае процесс-потомок закрывает старый файл стандартного вывода и переназначает с помощью функции dup дескриптор этого файла новому файлу. Старый дескриптор созданного файла закрывается и сохраняется для запускаемой программы. Подобным же образом shell переназначает и стандартный ввод и стандартный вывод ошибок.

Рисунок 7.29. Взаимосвязь между процессами, исполняющими командную строку ls -l|wc

Из приведенного текста программы видно, как shell обрабатывает командную строку, используя один канал. Допустим, что командная строка имеет вид:

   ls -l|wc

После создания родительским процессом нового процесса процесс-потомок создает канал. Затем процесс-потомок создает свое ответвление; он и его потомок обрабатывают по одной компоненте командной строки. "Внучатый" процесс исполняет первую компоненту строки (ls): он собирается вести запись в канал, поэтому он закрывает старый файл стандартного вывода, передает его дескриптор каналу и закрывает старый дескриптор записи в канал, в котором (в дескрипторе) уже нет необходимости. Родитель (wc) "внучатого" процесса (ls) является потомком основного процесса, реализующего программу shell'а (см. Рисунок 7.29). Этот процесс (wc) закрывает свой файл стандартного ввода и передает его дескриптор каналу, в результате чего канал становится файлом стандартного ввода. Затем закрывается старый и уже не нужный дескриптор чтения из канала и исполняется вторая компонента командной строки. Оба порожденных процесса выполняются асинхронно, причем выход одного процесса поступает на вход другого. Тем временем основной процесс дожидается завершения своего потомка (wc), после чего продолжает свою обычную работу: по завершении процесса, выполняющего команду wc, вся командная строка является обработанной. Shell возвращается в цикл и считывает следующую командную строку.

Предыдущая глава || Оглавление || Следующая глава