Книга: Разработка приложений в среде Linux. Второе издание

17.5.3. Адресация IPv6

17.5.3. Адресация IPv6

В IPv6 используется тот же самый кортеж (локальный хост, локальный порт, удаленный хост, удаленный порт), что и в IPv4, и одни и те же номера портов (16-битные значения).

IPv6-адреса локального и удаленного хостов являются 128-битными (16-байтовыми) числами вместо 32-битных чисел, которые использовались в IPv4. Применение таких больших адресов обеспечивает протоколы достаточным количеством адресов для будущего развития (можно без проблем предоставить уникальный адрес каждому атому в Млечном Пути). На первый взгляд, это может показаться избыточной тратой ресурсов. Однако сетевые архитектуры имеют склонность небрежно относиться к адресам и растрачивать огромное их число впустую, поэтому разработчики версии IPv6 предпочли перейти к 128-битным адресам сейчас, чем переживать о возможной необходимости изменять адреса в будущем.

Аналогом десятичного представления с разделителями-точками, которое используется в IPv4, для версии IPv6 является представление с разделителями-двоеточиями. Как подсказывает название, двоеточия отделяют каждую пару байтов в адресе (вместо точки, которая отделяет каждый отдельный байт). Из-за большой длины IPv6-адреса записываются в шестнадцатеричной (а не в десятичной) форме, что помогает уменьшить их длину. Ниже показано несколько примеров того, как выглядит IPv6-адрес в представлении с разделителями-двоеточиями[132].

1080:0:0:0:8:800:200С:417А
FF01:0:0:0:0:0:0:43
0:0:0:0:0:0:0:1

В связи с тем, что такие адреса являются слишком громоздкими и часто содержат приличное количество нулей, допускается сокращение. Все нули можно просто выбросить из записи адреса, а группы более чем из двух последовательных двоеточий заменить только одной парой двоеточий. Применение этих правил к записанным выше адресам дает следующий результат.

1080::8:800:200C:417A
FF01::43
::1

Если рассмотреть самый крайний случай, то адрес 0:0:0:0:0:0:0:0 превращается просто в выражение ::[133].

Последний метод записи IPv6-адресов заключается в том, что последние 32 бита представляются с разделительными точками, а первые 96 битов — с разделительными двоеточиями. При этом адрес обратной связи IPv6 ::1 будет записан либо как ::0.0.0.1, либо как 0:0:0:0:0:0:0.0.0.1.

IPv6 определяет любой адрес с 96 начальными нулями (за исключением адреса обратной связи и неустановленного адреса) как совместимый IPv4-адрес, который позволяет сетевым маршрутизаторам передавать через сети IPv6 пакеты, предназначенные для IPv4-хостов. Сокращение двоеточий позволяет легко записать IPv4-адрес как IPv6-адрес путем добавления :: перед стандартным десятичным адресом с точками. Такой тип адресов называется IPv4-совместимым IPv6-адресом. Такая адресация применяется только маршрутизаторами; обычные программы не могут воспользоваться ее преимуществами.

Программы, работающие на машинах IPv6 и требующие обращения к машинам IPv4, могут использовать отображенные IPv4-адреса. Они дополняют IPv4-адрес 80-ю нулевыми старшими разрядами и 16-битным значением 0xffff, которое записывается как ::ffff:, а за ним следует десятичный IPv4-адрес с точками. Подобная адресация позволяет большинству программ в системе, поддерживающей только версию IPv6, явно общаться с узлами IPv4.

IPv6-адреса хранятся в переменных типа struct sockaddr_in6.

#include <sys/socket.h>
#include <netinet/in.h>
struct sockaddr_in6 {
 short int sin6_family;        /* AF_INET6 */
 unsigned short int sin6_port; /* номер порта */
 unsigned int sin6_flowinfo;   /* информация о потоке обмена IPv6 */
 struct in6_addr sin6_addr;    /* IP-адрес */
 unsigned int sin6_scope_id;   /* набор граничных интерфейсов */
}

Данная структура подобна struct sockaddr_in; здесь первый член сохраняет семейство адресов (в этом примере AF_INET6), а следующий — 16-битный номер порта в сетевом порядке байтов.

Четвертый член содержит двоичное представление IPv6-адреса, выполняя те же самые функции, что и последний член структуры struct sockaddr_in. Оставшиеся два элемента sin6_flowinfo и sin6_scope_id используются в более сложных задачах и для большинства приложений должны быть равны нулю.

Стандарты ограничивают struct sockaddr_in в точности тремя членами, тогда как struct sockaddr_in6 позволительно иметь дополнительные элементы. По этой причине программы, которые вручную заполняют struct sockaddr_in6, должны обнулить все данные структуры с помощью функции memset().

Оглавление книги


Генерация: 0.083. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз