Книга: Программирование мобильных устройств на платформе .NET Compact Framework

Конечный автомат для модели памяти

Конечный автомат для модели памяти

В большинстве приложений важная информация о состоянии хранится в памяти. Так, в случае текстовых процессоров в памяти хранится модель документа, с которым в данный момент ведется работа. Электронные таблицы сохраняют в памяти табличные данные текущих листов. Игры поддерживают в памяти состояния, связанные с текущей видимой областью игры. Рассматриваемая нами обучающая игровая программа для изучения иностранных слов сохраняет в памяти часть словаря.

Данные, хранящиеся в памяти, часто представляют собой некий срез более крупного набора данных. В случае баз данных такие срезы, называемые также "представлениями" ("view"), отражают полный или частичный результат выполнения запроса к базе данных. Поскольку пользователю почти никогда не приходится работать одновременно со всеми данными, эффективность обработки данных можно значительно повысить, удерживая в памяти только те из них, в которых пользователь нуждается в текущий момент. Пользователи хотели бы работать с ощущением, что им доступен весь набор данных, но удовлетворение этого требования вовсе не означает, что все данные обязательно должны загружаться в память одновременно.

Как и в случае пользовательских интерфейсов, существует два возможных способа управления данными — явный и неявный. Ранее в этой книге уже отмечалось, что во многих настольных приложениях прослеживается небрежное отношение к управлению используемой памятью. Это приводит к напрасному расходу ресурсов, отрицательные последствия которого отчасти компенсируются наличием на настольных компьютерах больших объемов доступной памяти и возможностью использования файлов подкачки большого размера. В случае же мобильных устройств результатом такого подхода является недопустимое снижение производительности, поскольку необходимое для эффективного выполнения приложения пространство памяти оказывается заполненным ненужными объектами. Поэтому в приложениях для мобильных устройств крайне желательно использовать более активный подход, предполагающий явное управление использованием памяти.

В соответствии с вышеизложенным, прежде чем приступать к проектированию модели использования памяти для мобильного приложения, необходимо получить ответы на следующие вопросы: 

? Какой объем данных должен загружаться в каждый момент времени, чтобы пользователь имел возможность работать эффективно? 

? Когда и при каких условиях следует освобождать память от загруженных ранее данных? 

? Какой формат хранения данных в памяти является наиболее подходящим? При небольших объемах данных целесообразно выбирать тот формат, который более всего удобен с точки зрения программирования. С увеличением объема данных, например, при большом количестве строк, извлекаемых из базы данных, обязательным условием становится использование формата данных, оптимизированного в отношении расхода памяти и применяемых вычислительных методов. Кроме того, предусматриваемая модель должна обеспечивать сохранение в памяти недавно использованных данных и очистку памяти от всех остальных данных. 

? Существуют ли данные, которые было бы целесообразно кэшировать в памяти на все время работы? Вовсе не обязательно немедленно выгружать из памяти объекты, как только непосредственная необходимость в них исчезла, если спустя несколько мгновений приложение будет вынуждено вновь загружать их в память или заново воссоздавать. Память — это ресурс, благоразумное использование которого исключает как излишнюю расточительность, так и излишнюю скаредность. Есть ли смысл экономить на памяти, если положительный эффект от этого перекроется проигрышем во времени обработки?

Если вы имеете дело с несколькими различными типами данных или системных ресурсов, то конечный автомат может потребоваться для каждого из них. В рассмотренном выше примере обучающей словарной игры существует несколько типов данных и ресурсов, эффективное управление которыми в памяти необходимо обеспечить: 

? Состав словаря. Используемый для игры словарь может содержать тысячи и даже десятки тысяч слов, каждое из которых должно снабжаться соответствующими определениями и примерами их использования. Мы могли бы попытаться загрузить в память одновременно все эти слова, но это было крайне неэкономно. Что нам необходимо — так это создать у пользователя впечатление, будто в памяти находятся сразу все слова, а на самом деле осуществлять хорошо продуманную подкачку слов в соответствие с развитием игры. Программное обеспечение должно справиться с этой задачей за счет использования гибкого конечного автомата и набора вспомогательных алгоритмов, поддерживающих создание нужной нам иллюзии. Наши алгоритмы управления памятью должны обеспечивать загрузку фиксированного числа случайных слов в память, возможность их использования в течение некоторого времени и последующее освобождение памяти для загрузки новых слов. Кроме того, желательно, чтобы проект был масштабируемым и позволял указывать количество слов, подлежащих загрузке в память, чтобы тем самым регулировать этот параметр по мере того, как мы лучше изучим потребности пользователей и возможности целевого мобильного устройства в отношении хранения этих данных в памяти. Поскольку количество слов, которые мы собираемся одновременно удерживать в памяти вместе с относящимися к ним определениями и другой родственной информацией, может исчисляться сотнями, то имеет смысл подумать о выборе наиболее подходящего способа хранения этих данных в памяти и доступа к ним. 

? Данные панели игры. Поскольку наша игра — графическая, то каждый отображаемый на панели уровень игры должен обладать собственными состояниями и ресурсами, которые с ним связаны. Все растровые изображения и объекты, хранящие информацию о состоянии, относящуюся к отдельным зонам панели игры, занимают определенные объемы памяти. Вполне вероятно, что наиболее оптимальным был бы конечный автомат, который в каждый момент времени хранит в памяти данные, относящиеся только к панели текущего уровня игры, и освобождает память от этих данных сразу же после того, как необходимость в них отпадает, например, когда должны быть загружены данные для другого уровня. 

? Глобально доступные кэшированные графические объекты. В нашей графической игре будет повторно выполняться множество самых обычных задач рисования. Вместо того чтобы непрерывно создавать и уничтожать часто используемые перья, кисти и растровые изображения, имеет смысл привлечь модель состояний, обеспечивающую хранение этих ресурсов в памяти на протяжении всего того времени, в течение которого они необходимы для выполнения повторяющихся задач перерисовки экрана. При переключении состояния игры в режим, в котором эти ресурсы не требуются, память может освобождаться от них.

Оглавление книги


Генерация: 1.116. Запросов К БД/Cache: 3 / 1
поделиться
Вверх Вниз